Properties

Label 2-4140-1.1-c1-0-16
Degree $2$
Conductor $4140$
Sign $1$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2.81·7-s + 4.70·11-s + 4.24·13-s − 3.85·17-s + 6.70·19-s − 23-s + 25-s + 1.42·29-s − 9.03·31-s − 2.81·35-s + 5.28·37-s + 10.3·41-s + 12.1·43-s − 10.0·47-s + 0.921·49-s + 9.17·53-s − 4.70·55-s − 6.36·59-s − 10.4·61-s − 4.24·65-s + 6.50·67-s − 8.74·71-s − 0.240·73-s + 13.2·77-s − 4.48·79-s − 13.1·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.06·7-s + 1.41·11-s + 1.17·13-s − 0.934·17-s + 1.53·19-s − 0.208·23-s + 0.200·25-s + 0.264·29-s − 1.62·31-s − 0.475·35-s + 0.868·37-s + 1.62·41-s + 1.85·43-s − 1.46·47-s + 0.131·49-s + 1.25·53-s − 0.634·55-s − 0.828·59-s − 1.33·61-s − 0.525·65-s + 0.794·67-s − 1.03·71-s − 0.0280·73-s + 1.51·77-s − 0.504·79-s − 1.43·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.465386584\)
\(L(\frac12)\) \(\approx\) \(2.465386584\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 + T \)
good7 \( 1 - 2.81T + 7T^{2} \)
11 \( 1 - 4.70T + 11T^{2} \)
13 \( 1 - 4.24T + 13T^{2} \)
17 \( 1 + 3.85T + 17T^{2} \)
19 \( 1 - 6.70T + 19T^{2} \)
29 \( 1 - 1.42T + 29T^{2} \)
31 \( 1 + 9.03T + 31T^{2} \)
37 \( 1 - 5.28T + 37T^{2} \)
41 \( 1 - 10.3T + 41T^{2} \)
43 \( 1 - 12.1T + 43T^{2} \)
47 \( 1 + 10.0T + 47T^{2} \)
53 \( 1 - 9.17T + 53T^{2} \)
59 \( 1 + 6.36T + 59T^{2} \)
61 \( 1 + 10.4T + 61T^{2} \)
67 \( 1 - 6.50T + 67T^{2} \)
71 \( 1 + 8.74T + 71T^{2} \)
73 \( 1 + 0.240T + 73T^{2} \)
79 \( 1 + 4.48T + 79T^{2} \)
83 \( 1 + 13.1T + 83T^{2} \)
89 \( 1 - 7.62T + 89T^{2} \)
97 \( 1 + 0.385T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.429595741301739766188265285990, −7.67473768829531135023731723072, −7.08984765432574458336965612643, −6.16083064387564137213039116286, −5.52690729709112822185883097805, −4.40136731492024895530579149451, −4.03869359143274857887925433193, −3.04652223449902617214032525658, −1.73390245124033855369817568314, −0.990654592544208267476059116202, 0.990654592544208267476059116202, 1.73390245124033855369817568314, 3.04652223449902617214032525658, 4.03869359143274857887925433193, 4.40136731492024895530579149451, 5.52690729709112822185883097805, 6.16083064387564137213039116286, 7.08984765432574458336965612643, 7.67473768829531135023731723072, 8.429595741301739766188265285990

Graph of the $Z$-function along the critical line