Properties

Label 2-4140-1.1-c1-0-0
Degree $2$
Conductor $4140$
Sign $1$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3.57·7-s − 4.75·11-s − 6.44·13-s − 3.46·17-s − 2.75·19-s − 23-s + 25-s − 2.86·29-s − 0.395·31-s + 3.57·35-s + 0.112·37-s + 2.32·41-s + 12.6·43-s + 6.80·47-s + 5.79·49-s + 1.41·53-s + 4.75·55-s − 4.51·59-s − 0.165·61-s + 6.44·65-s + 5.53·67-s − 13.4·71-s + 10.4·73-s + 17.0·77-s + 0.498·79-s + 12.8·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.35·7-s − 1.43·11-s − 1.78·13-s − 0.839·17-s − 0.632·19-s − 0.208·23-s + 0.200·25-s − 0.532·29-s − 0.0709·31-s + 0.604·35-s + 0.0185·37-s + 0.362·41-s + 1.92·43-s + 0.991·47-s + 0.828·49-s + 0.194·53-s + 0.641·55-s − 0.587·59-s − 0.0211·61-s + 0.799·65-s + 0.675·67-s − 1.59·71-s + 1.22·73-s + 1.93·77-s + 0.0560·79-s + 1.41·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3647982447\)
\(L(\frac12)\) \(\approx\) \(0.3647982447\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 + T \)
good7 \( 1 + 3.57T + 7T^{2} \)
11 \( 1 + 4.75T + 11T^{2} \)
13 \( 1 + 6.44T + 13T^{2} \)
17 \( 1 + 3.46T + 17T^{2} \)
19 \( 1 + 2.75T + 19T^{2} \)
29 \( 1 + 2.86T + 29T^{2} \)
31 \( 1 + 0.395T + 31T^{2} \)
37 \( 1 - 0.112T + 37T^{2} \)
41 \( 1 - 2.32T + 41T^{2} \)
43 \( 1 - 12.6T + 43T^{2} \)
47 \( 1 - 6.80T + 47T^{2} \)
53 \( 1 - 1.41T + 53T^{2} \)
59 \( 1 + 4.51T + 59T^{2} \)
61 \( 1 + 0.165T + 61T^{2} \)
67 \( 1 - 5.53T + 67T^{2} \)
71 \( 1 + 13.4T + 71T^{2} \)
73 \( 1 - 10.4T + 73T^{2} \)
79 \( 1 - 0.498T + 79T^{2} \)
83 \( 1 - 12.8T + 83T^{2} \)
89 \( 1 + 5.15T + 89T^{2} \)
97 \( 1 + 6.96T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.348230668403012454038413143757, −7.52022181866206299795625195012, −7.13781268831175381832487802808, −6.24197777186684171463272663234, −5.45165227688109896175441460822, −4.63231978310258125351903045464, −3.85181003605441108576672341244, −2.70485303278538800203607353922, −2.39060719480753954094243362028, −0.31249239573058417447731485043, 0.31249239573058417447731485043, 2.39060719480753954094243362028, 2.70485303278538800203607353922, 3.85181003605441108576672341244, 4.63231978310258125351903045464, 5.45165227688109896175441460822, 6.24197777186684171463272663234, 7.13781268831175381832487802808, 7.52022181866206299795625195012, 8.348230668403012454038413143757

Graph of the $Z$-function along the critical line