Properties

Label 2-414-1.1-c3-0-13
Degree $2$
Conductor $414$
Sign $1$
Analytic cond. $24.4267$
Root an. cond. $4.94234$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s + 13.2·5-s − 10.2·7-s + 8·8-s + 26.4·10-s + 14.6·11-s − 23.2·13-s − 20.5·14-s + 16·16-s + 119.·17-s + 112.·19-s + 52.9·20-s + 29.3·22-s + 23·23-s + 50.0·25-s − 46.5·26-s − 41.1·28-s − 104.·29-s − 27.1·31-s + 32·32-s + 238.·34-s − 136.·35-s − 24.7·37-s + 224.·38-s + 105.·40-s − 174.·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 1.18·5-s − 0.555·7-s + 0.353·8-s + 0.836·10-s + 0.402·11-s − 0.496·13-s − 0.392·14-s + 0.250·16-s + 1.70·17-s + 1.35·19-s + 0.591·20-s + 0.284·22-s + 0.208·23-s + 0.400·25-s − 0.351·26-s − 0.277·28-s − 0.670·29-s − 0.157·31-s + 0.176·32-s + 1.20·34-s − 0.657·35-s − 0.109·37-s + 0.960·38-s + 0.418·40-s − 0.663·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 414 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 414 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(414\)    =    \(2 \cdot 3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(24.4267\)
Root analytic conductor: \(4.94234\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 414,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.759315437\)
\(L(\frac12)\) \(\approx\) \(3.759315437\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
3 \( 1 \)
23 \( 1 - 23T \)
good5 \( 1 - 13.2T + 125T^{2} \)
7 \( 1 + 10.2T + 343T^{2} \)
11 \( 1 - 14.6T + 1.33e3T^{2} \)
13 \( 1 + 23.2T + 2.19e3T^{2} \)
17 \( 1 - 119.T + 4.91e3T^{2} \)
19 \( 1 - 112.T + 6.85e3T^{2} \)
29 \( 1 + 104.T + 2.43e4T^{2} \)
31 \( 1 + 27.1T + 2.97e4T^{2} \)
37 \( 1 + 24.7T + 5.06e4T^{2} \)
41 \( 1 + 174.T + 6.89e4T^{2} \)
43 \( 1 - 506.T + 7.95e4T^{2} \)
47 \( 1 - 256.T + 1.03e5T^{2} \)
53 \( 1 - 200.T + 1.48e5T^{2} \)
59 \( 1 + 446.T + 2.05e5T^{2} \)
61 \( 1 - 419.T + 2.26e5T^{2} \)
67 \( 1 + 70.3T + 3.00e5T^{2} \)
71 \( 1 - 190.T + 3.57e5T^{2} \)
73 \( 1 - 480.T + 3.89e5T^{2} \)
79 \( 1 - 1.32e3T + 4.93e5T^{2} \)
83 \( 1 + 407.T + 5.71e5T^{2} \)
89 \( 1 + 1.43e3T + 7.04e5T^{2} \)
97 \( 1 + 985.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.77900889568792293204920980083, −9.747275279061429552576988787686, −9.416629323362669803984168011436, −7.79232524202977853181969974793, −6.86381256384171263698049440017, −5.77190981391525465562046380516, −5.28350104519318577067199458421, −3.71438678960576077646538483439, −2.66693349339710316460825945911, −1.27587717155017220594931219924, 1.27587717155017220594931219924, 2.66693349339710316460825945911, 3.71438678960576077646538483439, 5.28350104519318577067199458421, 5.77190981391525465562046380516, 6.86381256384171263698049440017, 7.79232524202977853181969974793, 9.416629323362669803984168011436, 9.747275279061429552576988787686, 10.77900889568792293204920980083

Graph of the $Z$-function along the critical line