Properties

Label 2-414-1.1-c3-0-11
Degree $2$
Conductor $414$
Sign $1$
Analytic cond. $24.4267$
Root an. cond. $4.94234$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s + 7.28·5-s + 35.9·7-s − 8·8-s − 14.5·10-s + 41.0·11-s + 28.7·13-s − 71.9·14-s + 16·16-s + 1.14·17-s + 118.·19-s + 29.1·20-s − 82.1·22-s − 23·23-s − 71.9·25-s − 57.5·26-s + 143.·28-s − 274.·29-s − 93.9·31-s − 32·32-s − 2.29·34-s + 262.·35-s + 15.1·37-s − 237.·38-s − 58.2·40-s − 6.22·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.651·5-s + 1.94·7-s − 0.353·8-s − 0.460·10-s + 1.12·11-s + 0.613·13-s − 1.37·14-s + 0.250·16-s + 0.0163·17-s + 1.43·19-s + 0.325·20-s − 0.795·22-s − 0.208·23-s − 0.575·25-s − 0.433·26-s + 0.971·28-s − 1.75·29-s − 0.544·31-s − 0.176·32-s − 0.0115·34-s + 1.26·35-s + 0.0672·37-s − 1.01·38-s − 0.230·40-s − 0.0237·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 414 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 414 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(414\)    =    \(2 \cdot 3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(24.4267\)
Root analytic conductor: \(4.94234\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 414,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.192542498\)
\(L(\frac12)\) \(\approx\) \(2.192542498\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 \)
23 \( 1 + 23T \)
good5 \( 1 - 7.28T + 125T^{2} \)
7 \( 1 - 35.9T + 343T^{2} \)
11 \( 1 - 41.0T + 1.33e3T^{2} \)
13 \( 1 - 28.7T + 2.19e3T^{2} \)
17 \( 1 - 1.14T + 4.91e3T^{2} \)
19 \( 1 - 118.T + 6.85e3T^{2} \)
29 \( 1 + 274.T + 2.43e4T^{2} \)
31 \( 1 + 93.9T + 2.97e4T^{2} \)
37 \( 1 - 15.1T + 5.06e4T^{2} \)
41 \( 1 + 6.22T + 6.89e4T^{2} \)
43 \( 1 - 188.T + 7.95e4T^{2} \)
47 \( 1 + 173.T + 1.03e5T^{2} \)
53 \( 1 + 463.T + 1.48e5T^{2} \)
59 \( 1 + 196.T + 2.05e5T^{2} \)
61 \( 1 + 341.T + 2.26e5T^{2} \)
67 \( 1 - 463.T + 3.00e5T^{2} \)
71 \( 1 - 730.T + 3.57e5T^{2} \)
73 \( 1 - 389.T + 3.89e5T^{2} \)
79 \( 1 + 568.T + 4.93e5T^{2} \)
83 \( 1 - 1.19e3T + 5.71e5T^{2} \)
89 \( 1 + 780.T + 7.04e5T^{2} \)
97 \( 1 + 343.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.03076703960772635669671189944, −9.681091949121643054439190331330, −9.069776445403156540306696369545, −8.051482744647273112023303739398, −7.35758280122472861280454882366, −6.03676909885752335465136893921, −5.14997088464339939817413146059, −3.78171341390933650005999085765, −1.93175907798387611102130871505, −1.24375995141890192343811577838, 1.24375995141890192343811577838, 1.93175907798387611102130871505, 3.78171341390933650005999085765, 5.14997088464339939817413146059, 6.03676909885752335465136893921, 7.35758280122472861280454882366, 8.051482744647273112023303739398, 9.069776445403156540306696369545, 9.681091949121643054439190331330, 11.03076703960772635669671189944

Graph of the $Z$-function along the critical line