Properties

Label 2-414-1.1-c1-0-3
Degree $2$
Conductor $414$
Sign $1$
Analytic cond. $3.30580$
Root an. cond. $1.81818$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 1.64·5-s + 2·7-s + 8-s − 1.64·10-s + 1.64·11-s + 5.29·13-s + 2·14-s + 16-s + 3.29·17-s + 0.354·19-s − 1.64·20-s + 1.64·22-s − 23-s − 2.29·25-s + 5.29·26-s + 2·28-s − 9.29·29-s − 1.29·31-s + 32-s + 3.29·34-s − 3.29·35-s + 6.93·37-s + 0.354·38-s − 1.64·40-s − 6·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.736·5-s + 0.755·7-s + 0.353·8-s − 0.520·10-s + 0.496·11-s + 1.46·13-s + 0.534·14-s + 0.250·16-s + 0.798·17-s + 0.0812·19-s − 0.368·20-s + 0.350·22-s − 0.208·23-s − 0.458·25-s + 1.03·26-s + 0.377·28-s − 1.72·29-s − 0.231·31-s + 0.176·32-s + 0.564·34-s − 0.556·35-s + 1.14·37-s + 0.0574·38-s − 0.260·40-s − 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 414 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 414 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(414\)    =    \(2 \cdot 3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(3.30580\)
Root analytic conductor: \(1.81818\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 414,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.115921399\)
\(L(\frac12)\) \(\approx\) \(2.115921399\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 1.64T + 5T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
11 \( 1 - 1.64T + 11T^{2} \)
13 \( 1 - 5.29T + 13T^{2} \)
17 \( 1 - 3.29T + 17T^{2} \)
19 \( 1 - 0.354T + 19T^{2} \)
29 \( 1 + 9.29T + 29T^{2} \)
31 \( 1 + 1.29T + 31T^{2} \)
37 \( 1 - 6.93T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 0.354T + 43T^{2} \)
47 \( 1 + 6T + 47T^{2} \)
53 \( 1 - 1.64T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 0.354T + 61T^{2} \)
67 \( 1 + 14.9T + 67T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 + 7.29T + 73T^{2} \)
79 \( 1 - 8.58T + 79T^{2} \)
83 \( 1 - 13.6T + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 1.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.43855571395339160704233000076, −10.68848734132717030147684526857, −9.373540314571360554561536372032, −8.213151869880932335026902257164, −7.58760820887045455896764147784, −6.34392027162519977867855247693, −5.39964865193001709794215659931, −4.15891181000549064408900710699, −3.43996159070286107653714567357, −1.57239268482570641614203851635, 1.57239268482570641614203851635, 3.43996159070286107653714567357, 4.15891181000549064408900710699, 5.39964865193001709794215659931, 6.34392027162519977867855247693, 7.58760820887045455896764147784, 8.213151869880932335026902257164, 9.373540314571360554561536372032, 10.68848734132717030147684526857, 11.43855571395339160704233000076

Graph of the $Z$-function along the critical line