Properties

Label 2-414-1.1-c1-0-0
Degree $2$
Conductor $414$
Sign $1$
Analytic cond. $3.30580$
Root an. cond. $1.81818$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3.64·5-s + 2·7-s − 8-s + 3.64·10-s + 3.64·11-s − 5.29·13-s − 2·14-s + 16-s + 7.29·17-s + 5.64·19-s − 3.64·20-s − 3.64·22-s + 23-s + 8.29·25-s + 5.29·26-s + 2·28-s − 1.29·29-s + 9.29·31-s − 32-s − 7.29·34-s − 7.29·35-s − 8.93·37-s − 5.64·38-s + 3.64·40-s + 6·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.63·5-s + 0.755·7-s − 0.353·8-s + 1.15·10-s + 1.09·11-s − 1.46·13-s − 0.534·14-s + 0.250·16-s + 1.76·17-s + 1.29·19-s − 0.815·20-s − 0.777·22-s + 0.208·23-s + 1.65·25-s + 1.03·26-s + 0.377·28-s − 0.239·29-s + 1.66·31-s − 0.176·32-s − 1.25·34-s − 1.23·35-s − 1.46·37-s − 0.915·38-s + 0.576·40-s + 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 414 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 414 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(414\)    =    \(2 \cdot 3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(3.30580\)
Root analytic conductor: \(1.81818\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 414,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8515062077\)
\(L(\frac12)\) \(\approx\) \(0.8515062077\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 3.64T + 5T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
11 \( 1 - 3.64T + 11T^{2} \)
13 \( 1 + 5.29T + 13T^{2} \)
17 \( 1 - 7.29T + 17T^{2} \)
19 \( 1 - 5.64T + 19T^{2} \)
29 \( 1 + 1.29T + 29T^{2} \)
31 \( 1 - 9.29T + 31T^{2} \)
37 \( 1 + 8.93T + 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 5.64T + 43T^{2} \)
47 \( 1 - 6T + 47T^{2} \)
53 \( 1 - 3.64T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 5.64T + 61T^{2} \)
67 \( 1 - 0.937T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 - 3.29T + 73T^{2} \)
79 \( 1 + 12.5T + 79T^{2} \)
83 \( 1 + 8.35T + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 9.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.42040563994266866501743132035, −10.26095027768618246511897003410, −9.378722773826353719771765495979, −8.287703697821199902486276496520, −7.59310279482573095032487397250, −7.07016137321053242716383940365, −5.37637725804369239791115941708, −4.22026374078375503376121968005, −3.05176169464901095133350979583, −1.03252784750203758561527897719, 1.03252784750203758561527897719, 3.05176169464901095133350979583, 4.22026374078375503376121968005, 5.37637725804369239791115941708, 7.07016137321053242716383940365, 7.59310279482573095032487397250, 8.287703697821199902486276496520, 9.378722773826353719771765495979, 10.26095027768618246511897003410, 11.42040563994266866501743132035

Graph of the $Z$-function along the critical line