Properties

Label 2-40e2-8.5-c1-0-32
Degree 22
Conductor 16001600
Sign 0.707+0.707i-0.707 + 0.707i
Analytic cond. 12.776012.7760
Root an. cond. 3.574363.57436
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·3-s − 9-s − 6i·11-s + 6·17-s + 2i·19-s − 4i·27-s − 12·33-s − 6·41-s − 10i·43-s − 7·49-s − 12i·51-s + 4·57-s − 6i·59-s + 14i·67-s − 2·73-s + ⋯
L(s)  = 1  − 1.15i·3-s − 0.333·9-s − 1.80i·11-s + 1.45·17-s + 0.458i·19-s − 0.769i·27-s − 2.08·33-s − 0.937·41-s − 1.52i·43-s − 49-s − 1.68i·51-s + 0.529·57-s − 0.781i·59-s + 1.71i·67-s − 0.234·73-s + ⋯

Functional equation

Λ(s)=(1600s/2ΓC(s)L(s)=((0.707+0.707i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1600s/2ΓC(s+1/2)L(s)=((0.707+0.707i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 16001600    =    26522^{6} \cdot 5^{2}
Sign: 0.707+0.707i-0.707 + 0.707i
Analytic conductor: 12.776012.7760
Root analytic conductor: 3.574363.57436
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1600(801,)\chi_{1600} (801, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1600, ( :1/2), 0.707+0.707i)(2,\ 1600,\ (\ :1/2),\ -0.707 + 0.707i)

Particular Values

L(1)L(1) \approx 1.5931093451.593109345
L(12)L(\frac12) \approx 1.5931093451.593109345
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
good3 1+2iT3T2 1 + 2iT - 3T^{2}
7 1+7T2 1 + 7T^{2}
11 1+6iT11T2 1 + 6iT - 11T^{2}
13 113T2 1 - 13T^{2}
17 16T+17T2 1 - 6T + 17T^{2}
19 12iT19T2 1 - 2iT - 19T^{2}
23 1+23T2 1 + 23T^{2}
29 129T2 1 - 29T^{2}
31 1+31T2 1 + 31T^{2}
37 137T2 1 - 37T^{2}
41 1+6T+41T2 1 + 6T + 41T^{2}
43 1+10iT43T2 1 + 10iT - 43T^{2}
47 1+47T2 1 + 47T^{2}
53 153T2 1 - 53T^{2}
59 1+6iT59T2 1 + 6iT - 59T^{2}
61 161T2 1 - 61T^{2}
67 114iT67T2 1 - 14iT - 67T^{2}
71 1+71T2 1 + 71T^{2}
73 1+2T+73T2 1 + 2T + 73T^{2}
79 1+79T2 1 + 79T^{2}
83 1+18iT83T2 1 + 18iT - 83T^{2}
89 118T+89T2 1 - 18T + 89T^{2}
97 1+10T+97T2 1 + 10T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.851616209863958700260998977023, −8.172631021432919553864616120885, −7.60788838758082033607254322932, −6.68281195308945160314481488920, −5.95307842161694148323001762585, −5.28142301435937642599599931765, −3.77096149761736834639654490818, −2.98866927850474552144855626409, −1.65869642098408123024634693077, −0.65002429655742763620723412684, 1.58120374473771042556784119673, 2.94778991351403219971777831753, 3.92857836024839309430758945156, 4.74599182667682973572692993289, 5.26516734667149971724317250711, 6.50593193379168764596163133492, 7.37550334194041508567538602736, 8.103774700995373890607445658339, 9.313892019799464381556970285465, 9.694416774443088210999715477646

Graph of the ZZ-function along the critical line