Properties

Label 2-40e2-8.5-c1-0-32
Degree $2$
Conductor $1600$
Sign $-0.707 + 0.707i$
Analytic cond. $12.7760$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·3-s − 9-s − 6i·11-s + 6·17-s + 2i·19-s − 4i·27-s − 12·33-s − 6·41-s − 10i·43-s − 7·49-s − 12i·51-s + 4·57-s − 6i·59-s + 14i·67-s − 2·73-s + ⋯
L(s)  = 1  − 1.15i·3-s − 0.333·9-s − 1.80i·11-s + 1.45·17-s + 0.458i·19-s − 0.769i·27-s − 2.08·33-s − 0.937·41-s − 1.52i·43-s − 49-s − 1.68i·51-s + 0.529·57-s − 0.781i·59-s + 1.71i·67-s − 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $-0.707 + 0.707i$
Analytic conductor: \(12.7760\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1600} (801, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :1/2),\ -0.707 + 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.593109345\)
\(L(\frac12)\) \(\approx\) \(1.593109345\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 2iT - 3T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 6iT - 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 - 2iT - 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 10iT - 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 6iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 - 14iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 2T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 18iT - 83T^{2} \)
89 \( 1 - 18T + 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.851616209863958700260998977023, −8.172631021432919553864616120885, −7.60788838758082033607254322932, −6.68281195308945160314481488920, −5.95307842161694148323001762585, −5.28142301435937642599599931765, −3.77096149761736834639654490818, −2.98866927850474552144855626409, −1.65869642098408123024634693077, −0.65002429655742763620723412684, 1.58120374473771042556784119673, 2.94778991351403219971777831753, 3.92857836024839309430758945156, 4.74599182667682973572692993289, 5.26516734667149971724317250711, 6.50593193379168764596163133492, 7.37550334194041508567538602736, 8.103774700995373890607445658339, 9.313892019799464381556970285465, 9.694416774443088210999715477646

Graph of the $Z$-function along the critical line