L(s) = 1 | − 2i·3-s − 9-s − 6i·11-s + 6·17-s + 2i·19-s − 4i·27-s − 12·33-s − 6·41-s − 10i·43-s − 7·49-s − 12i·51-s + 4·57-s − 6i·59-s + 14i·67-s − 2·73-s + ⋯ |
L(s) = 1 | − 1.15i·3-s − 0.333·9-s − 1.80i·11-s + 1.45·17-s + 0.458i·19-s − 0.769i·27-s − 2.08·33-s − 0.937·41-s − 1.52i·43-s − 49-s − 1.68i·51-s + 0.529·57-s − 0.781i·59-s + 1.71i·67-s − 0.234·73-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(−0.707+0.707i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(−0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
−0.707+0.707i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(801,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :1/2), −0.707+0.707i)
|
Particular Values
L(1) |
≈ |
1.593109345 |
L(21) |
≈ |
1.593109345 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2iT−3T2 |
| 7 | 1+7T2 |
| 11 | 1+6iT−11T2 |
| 13 | 1−13T2 |
| 17 | 1−6T+17T2 |
| 19 | 1−2iT−19T2 |
| 23 | 1+23T2 |
| 29 | 1−29T2 |
| 31 | 1+31T2 |
| 37 | 1−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1+10iT−43T2 |
| 47 | 1+47T2 |
| 53 | 1−53T2 |
| 59 | 1+6iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1−14iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+2T+73T2 |
| 79 | 1+79T2 |
| 83 | 1+18iT−83T2 |
| 89 | 1−18T+89T2 |
| 97 | 1+10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.851616209863958700260998977023, −8.172631021432919553864616120885, −7.60788838758082033607254322932, −6.68281195308945160314481488920, −5.95307842161694148323001762585, −5.28142301435937642599599931765, −3.77096149761736834639654490818, −2.98866927850474552144855626409, −1.65869642098408123024634693077, −0.65002429655742763620723412684,
1.58120374473771042556784119673, 2.94778991351403219971777831753, 3.92857836024839309430758945156, 4.74599182667682973572692993289, 5.26516734667149971724317250711, 6.50593193379168764596163133492, 7.37550334194041508567538602736, 8.103774700995373890607445658339, 9.313892019799464381556970285465, 9.694416774443088210999715477646