L(s) = 1 | + 2i·3-s + 2i·7-s − 9-s − 4·11-s − 6i·13-s + 2i·17-s − 8·19-s − 4·21-s − 6i·23-s + 4i·27-s − 2·29-s − 4·31-s − 8i·33-s − 2i·37-s + 12·39-s + ⋯ |
L(s) = 1 | + 1.15i·3-s + 0.755i·7-s − 0.333·9-s − 1.20·11-s − 1.66i·13-s + 0.485i·17-s − 1.83·19-s − 0.872·21-s − 1.25i·23-s + 0.769i·27-s − 0.371·29-s − 0.718·31-s − 1.39i·33-s − 0.328i·37-s + 1.92·39-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 1600, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−2iT−3T2 |
| 7 | 1−2iT−7T2 |
| 11 | 1+4T+11T2 |
| 13 | 1+6iT−13T2 |
| 17 | 1−2iT−17T2 |
| 19 | 1+8T+19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+10T+41T2 |
| 43 | 1−2iT−43T2 |
| 47 | 1−2iT−47T2 |
| 53 | 1−2iT−53T2 |
| 59 | 1+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1+6iT−67T2 |
| 71 | 1−12T+71T2 |
| 73 | 1+10iT−73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1−10iT−83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1−10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.155985583096117039394650441908, −8.409799530723711511241889912968, −7.87828404512942150249527675303, −6.56907834446500933513654921958, −5.60104124022750292102211641871, −5.06632952221844786878583681668, −4.13537087465230804571820996375, −3.12607651914747200329058045298, −2.21913351617222597891132330615, 0,
1.59187482730967088947058848206, 2.32443200779169547829008970144, 3.77112147073722392183692579348, 4.65346565249472860870920095398, 5.73752957257773745987183120060, 6.86375252968661253189757882435, 7.03480239937336302191128047163, 7.947159410057509323919136631618, 8.680928383242480127954456467440