L(s) = 1 | + (−1 − i)3-s + (−1 + i)7-s + i·9-s + 2·21-s + (1 + i)23-s + 2i·29-s + (1 + i)43-s + (1 − i)47-s − i·49-s + (−1 − i)63-s + (1 − i)67-s − 2i·69-s + 81-s + (1 + i)83-s + (2 − 2i)87-s + ⋯ |
L(s) = 1 | + (−1 − i)3-s + (−1 + i)7-s + i·9-s + 2·21-s + (1 + i)23-s + 2i·29-s + (1 + i)43-s + (1 − i)47-s − i·49-s + (−1 − i)63-s + (1 − i)67-s − 2i·69-s + 81-s + (1 + i)83-s + (2 − 2i)87-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5913713371\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5913713371\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (1 + i)T + iT^{2} \) |
| 7 | \( 1 + (1 - i)T - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-1 - i)T + iT^{2} \) |
| 29 | \( 1 - 2iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-1 - i)T + iT^{2} \) |
| 47 | \( 1 + (-1 + i)T - iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + (-1 + i)T - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (-1 - i)T + iT^{2} \) |
| 89 | \( 1 - 2iT - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.466791997473487130280737475219, −9.043928265447382677534423569293, −7.917833732876467541241229579751, −6.95941736209400434148230776282, −6.55986998524535030237384893101, −5.60929089008795643751488387041, −5.18714801062533176031294069748, −3.58261539079594797861871942478, −2.56395168842232300890867732186, −1.24958978499490677720461180141,
0.59147959482019037054521395577, 2.70410768916376011757813084711, 3.94599839881235936888079873317, 4.36706039008445730316710681308, 5.43784671243576231369934894367, 6.22041960582588081252379114895, 6.92340797262602558140441530626, 7.85505237748298831364543957271, 9.060901116853319297913509992627, 9.729460302158698731675019460483