L(s) = 1 | + (1 − i)3-s + (1 + i)7-s − i·9-s + 2·21-s + (−1 + i)23-s − 2i·29-s + (−1 + i)43-s + (−1 − i)47-s + i·49-s + (1 − i)63-s + (−1 − i)67-s + 2i·69-s + 81-s + (−1 + i)83-s + (−2 − 2i)87-s + ⋯ |
L(s) = 1 | + (1 − i)3-s + (1 + i)7-s − i·9-s + 2·21-s + (−1 + i)23-s − 2i·29-s + (−1 + i)43-s + (−1 − i)47-s + i·49-s + (1 − i)63-s + (−1 − i)67-s + 2i·69-s + 81-s + (−1 + i)83-s + (−2 − 2i)87-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.673553564\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.673553564\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-1 + i)T - iT^{2} \) |
| 7 | \( 1 + (-1 - i)T + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (1 - i)T - iT^{2} \) |
| 29 | \( 1 + 2iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (1 - i)T - iT^{2} \) |
| 47 | \( 1 + (1 + i)T + iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + (1 + i)T + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (1 - i)T - iT^{2} \) |
| 89 | \( 1 + 2iT - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.336137767135761875116565430071, −8.424259432951252227075141732133, −8.081474969791895606429605224165, −7.42271215906803915216995867190, −6.35910984698418105891142023115, −5.55617438434589328247878086889, −4.50916375256853110461324208476, −3.27385646867688932235280580080, −2.24492217076563886293446112366, −1.64300569239688915817781434294,
1.59584208834128298357390072734, 2.89458068973806471730627222799, 3.84278008463460074942882744315, 4.48116622592691338547202548855, 5.22812367134743977701325713085, 6.59533025265282169763422979388, 7.49852891830371670949769420491, 8.290612172734234462516375814948, 8.768539091866812237486005072799, 9.702788932087076384253681683392