L(s) = 1 | + (−1 − i)3-s + (1 − i)7-s − i·9-s + 6i·11-s + (−1 + i)13-s + (−1 − i)17-s − 4·19-s − 2·21-s + (−5 − 5i)23-s + (−4 + 4i)27-s − 8i·29-s + 2i·31-s + (6 − 6i)33-s + (−5 − 5i)37-s + 2·39-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.577i)3-s + (0.377 − 0.377i)7-s − 0.333i·9-s + 1.80i·11-s + (−0.277 + 0.277i)13-s + (−0.242 − 0.242i)17-s − 0.917·19-s − 0.436·21-s + (−1.04 − 1.04i)23-s + (−0.769 + 0.769i)27-s − 1.48i·29-s + 0.359i·31-s + (1.04 − 1.04i)33-s + (−0.821 − 0.821i)37-s + 0.320·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.850 - 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (1 + i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1 + i)T - 7iT^{2} \) |
| 11 | \( 1 - 6iT - 11T^{2} \) |
| 13 | \( 1 + (1 - i)T - 13iT^{2} \) |
| 17 | \( 1 + (1 + i)T + 17iT^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + (5 + 5i)T + 23iT^{2} \) |
| 29 | \( 1 + 8iT - 29T^{2} \) |
| 31 | \( 1 - 2iT - 31T^{2} \) |
| 37 | \( 1 + (5 + 5i)T + 37iT^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + (-3 - 3i)T + 43iT^{2} \) |
| 47 | \( 1 + (7 - 7i)T - 47iT^{2} \) |
| 53 | \( 1 + (1 - i)T - 53iT^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 + (7 - 7i)T - 67iT^{2} \) |
| 71 | \( 1 + 6iT - 71T^{2} \) |
| 73 | \( 1 + (9 - 9i)T - 73iT^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 + (5 + 5i)T + 83iT^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (-3 - 3i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.025637204908989211419191621093, −7.889536571156655130389814405102, −7.28854716051763515581253346644, −6.55940039953861065185824892891, −5.86575297264700713333873134176, −4.51785488697542070280998210141, −4.24887415762888992609219846950, −2.48054409441270760871203712167, −1.56730681119818120057759854084, 0,
1.78081875858630517063994731620, 3.10534604220966593671916779248, 4.05225121294251739274196101591, 5.11131520097096109500924912143, 5.67345537595415015490197509243, 6.39077459417847177487225285081, 7.63282397342565243643138374584, 8.406837679272210433957835242484, 8.948862844657013768046769506814