Properties

Label 2-40e2-16.5-c1-0-7
Degree $2$
Conductor $1600$
Sign $-0.891 - 0.453i$
Analytic cond. $12.7760$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.488 + 0.488i)3-s + 4.71i·7-s + 2.52i·9-s + (3.91 + 3.91i)11-s + (0.0878 − 0.0878i)13-s − 4.67·17-s + (−1.81 + 1.81i)19-s + (−2.30 − 2.30i)21-s − 1.63i·23-s + (−2.69 − 2.69i)27-s + (3.26 − 3.26i)29-s + 2.12·31-s − 3.82·33-s + (−3.97 − 3.97i)37-s + 0.0858i·39-s + ⋯
L(s)  = 1  + (−0.282 + 0.282i)3-s + 1.78i·7-s + 0.840i·9-s + (1.17 + 1.17i)11-s + (0.0243 − 0.0243i)13-s − 1.13·17-s + (−0.415 + 0.415i)19-s + (−0.502 − 0.502i)21-s − 0.339i·23-s + (−0.519 − 0.519i)27-s + (0.606 − 0.606i)29-s + 0.382·31-s − 0.665·33-s + (−0.653 − 0.653i)37-s + 0.0137i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.891 - 0.453i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.891 - 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $-0.891 - 0.453i$
Analytic conductor: \(12.7760\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1600} (1201, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :1/2),\ -0.891 - 0.453i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.247331652\)
\(L(\frac12)\) \(\approx\) \(1.247331652\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (0.488 - 0.488i)T - 3iT^{2} \)
7 \( 1 - 4.71iT - 7T^{2} \)
11 \( 1 + (-3.91 - 3.91i)T + 11iT^{2} \)
13 \( 1 + (-0.0878 + 0.0878i)T - 13iT^{2} \)
17 \( 1 + 4.67T + 17T^{2} \)
19 \( 1 + (1.81 - 1.81i)T - 19iT^{2} \)
23 \( 1 + 1.63iT - 23T^{2} \)
29 \( 1 + (-3.26 + 3.26i)T - 29iT^{2} \)
31 \( 1 - 2.12T + 31T^{2} \)
37 \( 1 + (3.97 + 3.97i)T + 37iT^{2} \)
41 \( 1 + 8.25iT - 41T^{2} \)
43 \( 1 + (-2.27 - 2.27i)T + 43iT^{2} \)
47 \( 1 + 4.06T + 47T^{2} \)
53 \( 1 + (-5.03 - 5.03i)T + 53iT^{2} \)
59 \( 1 + (-5.16 - 5.16i)T + 59iT^{2} \)
61 \( 1 + (-7.12 + 7.12i)T - 61iT^{2} \)
67 \( 1 + (7.49 - 7.49i)T - 67iT^{2} \)
71 \( 1 + 4.54iT - 71T^{2} \)
73 \( 1 - 8.30iT - 73T^{2} \)
79 \( 1 + 11.5T + 79T^{2} \)
83 \( 1 + (1.16 - 1.16i)T - 83iT^{2} \)
89 \( 1 - 3.24iT - 89T^{2} \)
97 \( 1 - 13.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.694308070249421963371742874948, −8.875435624906913525818505891810, −8.453769226580228340355108574432, −7.26940127921078997658195191435, −6.39951076472009486625103753433, −5.66638010270958980816397625575, −4.78091765124014615839829831686, −4.07540754480318031022696903332, −2.48395285654181108102371275745, −1.92628154301381701981510341338, 0.52187373672974625745534128162, 1.39552942748050512905860210648, 3.24350364241580991321391896324, 3.93027993958815716535934681974, 4.73356751026845633420736811708, 6.15767561557648798392400995955, 6.66746810262250112265191143699, 7.18945904122639740222777632996, 8.373531665844386516736754665973, 8.990344028483285608545265126296

Graph of the $Z$-function along the critical line