Properties

Label 2-40e2-16.5-c1-0-5
Degree $2$
Conductor $1600$
Sign $-0.125 - 0.992i$
Analytic cond. $12.7760$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.09 − 1.09i)3-s + 0.973i·7-s + 0.616i·9-s + (−1.40 − 1.40i)11-s + (−4.60 + 4.60i)13-s + 0.490·17-s + (−4.54 + 4.54i)19-s + (1.06 + 1.06i)21-s + 1.94i·23-s + (3.94 + 3.94i)27-s + (−3.74 + 3.74i)29-s − 4.29·31-s − 3.07·33-s + (4.55 + 4.55i)37-s + 10.0i·39-s + ⋯
L(s)  = 1  + (0.630 − 0.630i)3-s + 0.368i·7-s + 0.205i·9-s + (−0.424 − 0.424i)11-s + (−1.27 + 1.27i)13-s + 0.118·17-s + (−1.04 + 1.04i)19-s + (0.231 + 0.231i)21-s + 0.405i·23-s + (0.759 + 0.759i)27-s + (−0.695 + 0.695i)29-s − 0.770·31-s − 0.535·33-s + (0.748 + 0.748i)37-s + 1.60i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.125 - 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.125 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $-0.125 - 0.992i$
Analytic conductor: \(12.7760\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1600} (1201, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :1/2),\ -0.125 - 0.992i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.147084235\)
\(L(\frac12)\) \(\approx\) \(1.147084235\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (-1.09 + 1.09i)T - 3iT^{2} \)
7 \( 1 - 0.973iT - 7T^{2} \)
11 \( 1 + (1.40 + 1.40i)T + 11iT^{2} \)
13 \( 1 + (4.60 - 4.60i)T - 13iT^{2} \)
17 \( 1 - 0.490T + 17T^{2} \)
19 \( 1 + (4.54 - 4.54i)T - 19iT^{2} \)
23 \( 1 - 1.94iT - 23T^{2} \)
29 \( 1 + (3.74 - 3.74i)T - 29iT^{2} \)
31 \( 1 + 4.29T + 31T^{2} \)
37 \( 1 + (-4.55 - 4.55i)T + 37iT^{2} \)
41 \( 1 + 10.1iT - 41T^{2} \)
43 \( 1 + (-1.79 - 1.79i)T + 43iT^{2} \)
47 \( 1 + 10.0T + 47T^{2} \)
53 \( 1 + (-5.61 - 5.61i)T + 53iT^{2} \)
59 \( 1 + (8.44 + 8.44i)T + 59iT^{2} \)
61 \( 1 + (-3.01 + 3.01i)T - 61iT^{2} \)
67 \( 1 + (7.07 - 7.07i)T - 67iT^{2} \)
71 \( 1 + 0.897iT - 71T^{2} \)
73 \( 1 + 9.71iT - 73T^{2} \)
79 \( 1 - 14.7T + 79T^{2} \)
83 \( 1 + (0.815 - 0.815i)T - 83iT^{2} \)
89 \( 1 - 1.12iT - 89T^{2} \)
97 \( 1 + 7.54T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.399820987871871345008217240522, −8.813187248106249734902907023440, −7.943408464377569714742294166324, −7.38928738096102992030742287065, −6.55192736696839659856946935885, −5.54570159033608021622796597529, −4.66440953430037408238648631958, −3.53298109421100608316531266846, −2.37422246045480885860770404154, −1.76721791164901375600833264557, 0.37352017714648012541383157869, 2.33455078684627712022838956721, 3.06472284037687108556718624411, 4.18010582820466661204160420766, 4.83018908358117304616098694812, 5.85043002104788424989702487634, 6.94843232239711462900351153310, 7.68763534188500083653695692815, 8.420528821660405320203653141250, 9.342498559951349938929107173296

Graph of the $Z$-function along the critical line