L(s) = 1 | + (−0.809 + 0.587i)5-s + (−0.309 − 0.951i)9-s + (1.11 − 0.363i)13-s + (1.11 + 1.53i)17-s + (0.309 − 0.951i)25-s + (0.5 + 0.363i)29-s + (1.80 − 0.587i)37-s + (0.5 + 1.53i)41-s + (0.809 + 0.587i)45-s − 49-s + (0.690 − 0.951i)53-s + (−0.5 + 1.53i)61-s + (−0.690 + 0.951i)65-s + (−1.11 − 0.363i)73-s + (−0.809 + 0.587i)81-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)5-s + (−0.309 − 0.951i)9-s + (1.11 − 0.363i)13-s + (1.11 + 1.53i)17-s + (0.309 − 0.951i)25-s + (0.5 + 0.363i)29-s + (1.80 − 0.587i)37-s + (0.5 + 1.53i)41-s + (0.809 + 0.587i)45-s − 49-s + (0.690 − 0.951i)53-s + (−0.5 + 1.53i)61-s + (−0.690 + 0.951i)65-s + (−1.11 − 0.363i)73-s + (−0.809 + 0.587i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.017978080\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.017978080\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.809 - 0.587i)T \) |
good | 3 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-1.11 + 0.363i)T + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-1.11 - 1.53i)T + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-1.80 + 0.587i)T + (0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.690 + 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (1.11 + 0.363i)T + (0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (-1.11 + 1.53i)T + (-0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.717128920226139436914606135664, −8.605517824045781502379615910866, −8.151257016711518618590991515858, −7.30099571986322909378116384886, −6.20170964877358913429992442054, −5.93197565913779101071176355386, −4.38307327113436565671588921341, −3.60343341494375955548794582944, −2.95634195530574495236351583992, −1.18046207854875186909808285273,
1.07445962264018564861532489530, 2.61768251873121508283234780368, 3.66515482525395427990241510366, 4.63446605525263673664890359337, 5.32459645949409041388816442960, 6.29218514930006460891393605739, 7.49335161484755410342788180755, 7.87837898207323642642555362823, 8.740642289004310144187668893255, 9.419246235799010977820089193344