Properties

Label 2-40e2-1.1-c3-0-40
Degree $2$
Conductor $1600$
Sign $1$
Analytic cond. $94.4030$
Root an. cond. $9.71612$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.89·3-s + 16.6·7-s − 18.5·9-s − 19.1·11-s + 61.7·13-s + 30.3·17-s + 59.1·19-s + 48.4·21-s + 205.·23-s − 132.·27-s − 8.38·29-s − 331.·31-s − 55.6·33-s + 266.·37-s + 179.·39-s − 320.·41-s − 83.1·43-s − 276.·47-s − 64.2·49-s + 88.0·51-s + 390.·53-s + 171.·57-s + 779.·59-s + 483.·61-s − 310.·63-s − 123.·67-s + 596.·69-s + ⋯
L(s)  = 1  + 0.557·3-s + 0.901·7-s − 0.688·9-s − 0.526·11-s + 1.31·13-s + 0.433·17-s + 0.714·19-s + 0.502·21-s + 1.86·23-s − 0.942·27-s − 0.0536·29-s − 1.91·31-s − 0.293·33-s + 1.18·37-s + 0.735·39-s − 1.22·41-s − 0.294·43-s − 0.857·47-s − 0.187·49-s + 0.241·51-s + 1.01·53-s + 0.398·57-s + 1.71·59-s + 1.01·61-s − 0.620·63-s − 0.225·67-s + 1.04·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(94.4030\)
Root analytic conductor: \(9.71612\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.105613898\)
\(L(\frac12)\) \(\approx\) \(3.105613898\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 2.89T + 27T^{2} \)
7 \( 1 - 16.6T + 343T^{2} \)
11 \( 1 + 19.1T + 1.33e3T^{2} \)
13 \( 1 - 61.7T + 2.19e3T^{2} \)
17 \( 1 - 30.3T + 4.91e3T^{2} \)
19 \( 1 - 59.1T + 6.85e3T^{2} \)
23 \( 1 - 205.T + 1.21e4T^{2} \)
29 \( 1 + 8.38T + 2.43e4T^{2} \)
31 \( 1 + 331.T + 2.97e4T^{2} \)
37 \( 1 - 266.T + 5.06e4T^{2} \)
41 \( 1 + 320.T + 6.89e4T^{2} \)
43 \( 1 + 83.1T + 7.95e4T^{2} \)
47 \( 1 + 276.T + 1.03e5T^{2} \)
53 \( 1 - 390.T + 1.48e5T^{2} \)
59 \( 1 - 779.T + 2.05e5T^{2} \)
61 \( 1 - 483.T + 2.26e5T^{2} \)
67 \( 1 + 123.T + 3.00e5T^{2} \)
71 \( 1 + 187.T + 3.57e5T^{2} \)
73 \( 1 - 778.T + 3.89e5T^{2} \)
79 \( 1 - 446.T + 4.93e5T^{2} \)
83 \( 1 - 1.05e3T + 5.71e5T^{2} \)
89 \( 1 + 94.8T + 7.04e5T^{2} \)
97 \( 1 + 252.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.872905626168413553633948352377, −8.312905440134297216500154773000, −7.65708881643923976186270119754, −6.73650598110102790729925618144, −5.52536218093732237693068112016, −5.12752221688227644894490795853, −3.75375819753133787790101235706, −3.07824277950506806619063957031, −1.93352328910712176155921433980, −0.855260719987510357351914533881, 0.855260719987510357351914533881, 1.93352328910712176155921433980, 3.07824277950506806619063957031, 3.75375819753133787790101235706, 5.12752221688227644894490795853, 5.52536218093732237693068112016, 6.73650598110102790729925618144, 7.65708881643923976186270119754, 8.312905440134297216500154773000, 8.872905626168413553633948352377

Graph of the $Z$-function along the critical line