Properties

Label 2-40e2-1.1-c3-0-31
Degree $2$
Conductor $1600$
Sign $1$
Analytic cond. $94.4030$
Root an. cond. $9.71612$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.25·3-s − 9.15·7-s + 0.640·9-s − 11.8·11-s + 41.9·13-s − 75.7·17-s + 2.49·19-s − 48.1·21-s + 17.8·23-s − 138.·27-s + 143.·29-s + 88.6·31-s − 62.5·33-s + 351.·37-s + 220.·39-s + 195.·41-s + 366.·43-s − 58.5·47-s − 259.·49-s − 398.·51-s − 0.374·53-s + 13.0·57-s + 318.·59-s − 446.·61-s − 5.86·63-s − 709.·67-s + 93.8·69-s + ⋯
L(s)  = 1  + 1.01·3-s − 0.494·7-s + 0.0237·9-s − 0.326·11-s + 0.895·13-s − 1.08·17-s + 0.0300·19-s − 0.500·21-s + 0.161·23-s − 0.987·27-s + 0.919·29-s + 0.513·31-s − 0.329·33-s + 1.55·37-s + 0.906·39-s + 0.746·41-s + 1.29·43-s − 0.181·47-s − 0.755·49-s − 1.09·51-s − 0.000971·53-s + 0.0304·57-s + 0.703·59-s − 0.937·61-s − 0.0117·63-s − 1.29·67-s + 0.163·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(94.4030\)
Root analytic conductor: \(9.71612\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.757745567\)
\(L(\frac12)\) \(\approx\) \(2.757745567\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 5.25T + 27T^{2} \)
7 \( 1 + 9.15T + 343T^{2} \)
11 \( 1 + 11.8T + 1.33e3T^{2} \)
13 \( 1 - 41.9T + 2.19e3T^{2} \)
17 \( 1 + 75.7T + 4.91e3T^{2} \)
19 \( 1 - 2.49T + 6.85e3T^{2} \)
23 \( 1 - 17.8T + 1.21e4T^{2} \)
29 \( 1 - 143.T + 2.43e4T^{2} \)
31 \( 1 - 88.6T + 2.97e4T^{2} \)
37 \( 1 - 351.T + 5.06e4T^{2} \)
41 \( 1 - 195.T + 6.89e4T^{2} \)
43 \( 1 - 366.T + 7.95e4T^{2} \)
47 \( 1 + 58.5T + 1.03e5T^{2} \)
53 \( 1 + 0.374T + 1.48e5T^{2} \)
59 \( 1 - 318.T + 2.05e5T^{2} \)
61 \( 1 + 446.T + 2.26e5T^{2} \)
67 \( 1 + 709.T + 3.00e5T^{2} \)
71 \( 1 - 1.13e3T + 3.57e5T^{2} \)
73 \( 1 - 85.3T + 3.89e5T^{2} \)
79 \( 1 - 1.24e3T + 4.93e5T^{2} \)
83 \( 1 - 926.T + 5.71e5T^{2} \)
89 \( 1 - 973.T + 7.04e5T^{2} \)
97 \( 1 - 1.15e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.098094027385360438049072933258, −8.253087759087298688205872158881, −7.71626318413709341061209893851, −6.56667215645445421097236487191, −5.98837124660024236936833114198, −4.72565879523453509653289337950, −3.81599137635205052811547794934, −2.92384882129628525006513226922, −2.20446937617665880875989460437, −0.74835617339392310790230964982, 0.74835617339392310790230964982, 2.20446937617665880875989460437, 2.92384882129628525006513226922, 3.81599137635205052811547794934, 4.72565879523453509653289337950, 5.98837124660024236936833114198, 6.56667215645445421097236487191, 7.71626318413709341061209893851, 8.253087759087298688205872158881, 9.098094027385360438049072933258

Graph of the $Z$-function along the critical line