Properties

Label 2-40e2-1.1-c3-0-105
Degree $2$
Conductor $1600$
Sign $-1$
Analytic cond. $94.4030$
Root an. cond. $9.71612$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·3-s − 4·7-s + 37·9-s + 12·11-s − 58·13-s − 66·17-s − 100·19-s − 32·21-s + 132·23-s + 80·27-s + 90·29-s − 152·31-s + 96·33-s − 34·37-s − 464·39-s − 438·41-s − 32·43-s − 204·47-s − 327·49-s − 528·51-s + 222·53-s − 800·57-s + 420·59-s − 902·61-s − 148·63-s + 1.02e3·67-s + 1.05e3·69-s + ⋯
L(s)  = 1  + 1.53·3-s − 0.215·7-s + 1.37·9-s + 0.328·11-s − 1.23·13-s − 0.941·17-s − 1.20·19-s − 0.332·21-s + 1.19·23-s + 0.570·27-s + 0.576·29-s − 0.880·31-s + 0.506·33-s − 0.151·37-s − 1.90·39-s − 1.66·41-s − 0.113·43-s − 0.633·47-s − 0.953·49-s − 1.44·51-s + 0.575·53-s − 1.85·57-s + 0.926·59-s − 1.89·61-s − 0.295·63-s + 1.86·67-s + 1.84·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(94.4030\)
Root analytic conductor: \(9.71612\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1600,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 8 T + p^{3} T^{2} \)
7 \( 1 + 4 T + p^{3} T^{2} \)
11 \( 1 - 12 T + p^{3} T^{2} \)
13 \( 1 + 58 T + p^{3} T^{2} \)
17 \( 1 + 66 T + p^{3} T^{2} \)
19 \( 1 + 100 T + p^{3} T^{2} \)
23 \( 1 - 132 T + p^{3} T^{2} \)
29 \( 1 - 90 T + p^{3} T^{2} \)
31 \( 1 + 152 T + p^{3} T^{2} \)
37 \( 1 + 34 T + p^{3} T^{2} \)
41 \( 1 + 438 T + p^{3} T^{2} \)
43 \( 1 + 32 T + p^{3} T^{2} \)
47 \( 1 + 204 T + p^{3} T^{2} \)
53 \( 1 - 222 T + p^{3} T^{2} \)
59 \( 1 - 420 T + p^{3} T^{2} \)
61 \( 1 + 902 T + p^{3} T^{2} \)
67 \( 1 - 1024 T + p^{3} T^{2} \)
71 \( 1 + 432 T + p^{3} T^{2} \)
73 \( 1 + 362 T + p^{3} T^{2} \)
79 \( 1 - 160 T + p^{3} T^{2} \)
83 \( 1 + 72 T + p^{3} T^{2} \)
89 \( 1 - 810 T + p^{3} T^{2} \)
97 \( 1 + 1106 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.713119708209427617064257199100, −8.032074868878772243840447054463, −7.07589995542523419959382738100, −6.58708086628972957656195052676, −5.10462761520489991869380359426, −4.28783118974605022607906101694, −3.33017316878570444266183831136, −2.52221873360286908650544342589, −1.72483963580542929396667597854, 0, 1.72483963580542929396667597854, 2.52221873360286908650544342589, 3.33017316878570444266183831136, 4.28783118974605022607906101694, 5.10462761520489991869380359426, 6.58708086628972957656195052676, 7.07589995542523419959382738100, 8.032074868878772243840447054463, 8.713119708209427617064257199100

Graph of the $Z$-function along the critical line