Properties

Label 2-40e2-1.1-c3-0-1
Degree $2$
Conductor $1600$
Sign $1$
Analytic cond. $94.4030$
Root an. cond. $9.71612$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.89·3-s − 16.6·7-s − 18.5·9-s − 19.1·11-s − 61.7·13-s − 30.3·17-s + 59.1·19-s + 48.4·21-s − 205.·23-s + 132.·27-s − 8.38·29-s − 331.·31-s + 55.6·33-s − 266.·37-s + 179.·39-s − 320.·41-s + 83.1·43-s + 276.·47-s − 64.2·49-s + 88.0·51-s − 390.·53-s − 171.·57-s + 779.·59-s + 483.·61-s + 310.·63-s + 123.·67-s + 596.·69-s + ⋯
L(s)  = 1  − 0.557·3-s − 0.901·7-s − 0.688·9-s − 0.526·11-s − 1.31·13-s − 0.433·17-s + 0.714·19-s + 0.502·21-s − 1.86·23-s + 0.942·27-s − 0.0536·29-s − 1.91·31-s + 0.293·33-s − 1.18·37-s + 0.735·39-s − 1.22·41-s + 0.294·43-s + 0.857·47-s − 0.187·49-s + 0.241·51-s − 1.01·53-s − 0.398·57-s + 1.71·59-s + 1.01·61-s + 0.620·63-s + 0.225·67-s + 1.04·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(94.4030\)
Root analytic conductor: \(9.71612\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1403046404\)
\(L(\frac12)\) \(\approx\) \(0.1403046404\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 2.89T + 27T^{2} \)
7 \( 1 + 16.6T + 343T^{2} \)
11 \( 1 + 19.1T + 1.33e3T^{2} \)
13 \( 1 + 61.7T + 2.19e3T^{2} \)
17 \( 1 + 30.3T + 4.91e3T^{2} \)
19 \( 1 - 59.1T + 6.85e3T^{2} \)
23 \( 1 + 205.T + 1.21e4T^{2} \)
29 \( 1 + 8.38T + 2.43e4T^{2} \)
31 \( 1 + 331.T + 2.97e4T^{2} \)
37 \( 1 + 266.T + 5.06e4T^{2} \)
41 \( 1 + 320.T + 6.89e4T^{2} \)
43 \( 1 - 83.1T + 7.95e4T^{2} \)
47 \( 1 - 276.T + 1.03e5T^{2} \)
53 \( 1 + 390.T + 1.48e5T^{2} \)
59 \( 1 - 779.T + 2.05e5T^{2} \)
61 \( 1 - 483.T + 2.26e5T^{2} \)
67 \( 1 - 123.T + 3.00e5T^{2} \)
71 \( 1 + 187.T + 3.57e5T^{2} \)
73 \( 1 + 778.T + 3.89e5T^{2} \)
79 \( 1 - 446.T + 4.93e5T^{2} \)
83 \( 1 + 1.05e3T + 5.71e5T^{2} \)
89 \( 1 + 94.8T + 7.04e5T^{2} \)
97 \( 1 - 252.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.154119063994364030946419898341, −8.230024549031977261201112575334, −7.32059690637410351753942528953, −6.63514838359359082725961593231, −5.62545057455784191406932348938, −5.21184636563706424518591945284, −3.95132483746709015920113435546, −2.97144898772109666039939184740, −2.00960561430840528515217407686, −0.17202929364149005461743655765, 0.17202929364149005461743655765, 2.00960561430840528515217407686, 2.97144898772109666039939184740, 3.95132483746709015920113435546, 5.21184636563706424518591945284, 5.62545057455784191406932348938, 6.63514838359359082725961593231, 7.32059690637410351753942528953, 8.230024549031977261201112575334, 9.154119063994364030946419898341

Graph of the $Z$-function along the critical line