Properties

Label 2-40e2-1.1-c1-0-7
Degree $2$
Conductor $1600$
Sign $1$
Analytic cond. $12.7760$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s − 2·9-s + 3·11-s + 4·13-s − 3·17-s − 5·19-s − 2·21-s + 6·23-s + 5·27-s + 2·31-s − 3·33-s − 2·37-s − 4·39-s − 3·41-s + 4·43-s + 12·47-s − 3·49-s + 3·51-s − 6·53-s + 5·57-s − 2·61-s − 4·63-s + 13·67-s − 6·69-s + 12·71-s + 11·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s − 2/3·9-s + 0.904·11-s + 1.10·13-s − 0.727·17-s − 1.14·19-s − 0.436·21-s + 1.25·23-s + 0.962·27-s + 0.359·31-s − 0.522·33-s − 0.328·37-s − 0.640·39-s − 0.468·41-s + 0.609·43-s + 1.75·47-s − 3/7·49-s + 0.420·51-s − 0.824·53-s + 0.662·57-s − 0.256·61-s − 0.503·63-s + 1.58·67-s − 0.722·69-s + 1.42·71-s + 1.28·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(12.7760\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.512851383\)
\(L(\frac12)\) \(\approx\) \(1.512851383\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 3 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 13 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 - 15 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.108795455289480583011416986557, −8.746535765801052966997753191886, −7.945377299913127727532994829665, −6.69992826322664140620538681665, −6.29316757927509488643773547834, −5.29439943415338779506744522168, −4.48531193864795315694041050402, −3.53176922528875095704922238510, −2.18562128408643501857872580519, −0.919526999450248053192487619525, 0.919526999450248053192487619525, 2.18562128408643501857872580519, 3.53176922528875095704922238510, 4.48531193864795315694041050402, 5.29439943415338779506744522168, 6.29316757927509488643773547834, 6.69992826322664140620538681665, 7.945377299913127727532994829665, 8.746535765801052966997753191886, 9.108795455289480583011416986557

Graph of the $Z$-function along the critical line