| L(s) = 1 | + (0.382 − 0.923i)2-s + (0.923 + 0.382i)3-s + (−0.707 − 0.707i)4-s + (0.707 − 0.707i)6-s + (−0.923 + 0.382i)8-s + (0.707 + 0.707i)9-s + (−0.382 − 0.0761i)11-s + (−0.382 − 0.923i)12-s + i·16-s + (−0.923 − 0.382i)17-s + (0.923 − 0.382i)18-s + (−1.30 − 0.541i)19-s + (−0.216 + 0.324i)22-s − 24-s + (0.382 + 0.923i)25-s + ⋯ |
| L(s) = 1 | + (0.382 − 0.923i)2-s + (0.923 + 0.382i)3-s + (−0.707 − 0.707i)4-s + (0.707 − 0.707i)6-s + (−0.923 + 0.382i)8-s + (0.707 + 0.707i)9-s + (−0.382 − 0.0761i)11-s + (−0.382 − 0.923i)12-s + i·16-s + (−0.923 − 0.382i)17-s + (0.923 − 0.382i)18-s + (−1.30 − 0.541i)19-s + (−0.216 + 0.324i)22-s − 24-s + (0.382 + 0.923i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.563 + 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.563 + 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.167030852\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.167030852\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.382 + 0.923i)T \) |
| 3 | \( 1 + (-0.923 - 0.382i)T \) |
| 17 | \( 1 + (0.923 + 0.382i)T \) |
| good | 5 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 7 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 11 | \( 1 + (0.382 + 0.0761i)T + (0.923 + 0.382i)T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (1.30 + 0.541i)T + (0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 29 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 31 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 37 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 41 | \( 1 + (-1.63 + 1.08i)T + (0.382 - 0.923i)T^{2} \) |
| 43 | \( 1 + (1.70 - 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 - 0.292i)T + (0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 67 | \( 1 + 0.765iT - T^{2} \) |
| 71 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 73 | \( 1 + (-1.08 + 1.63i)T + (-0.382 - 0.923i)T^{2} \) |
| 79 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 83 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (-0.541 + 0.541i)T - iT^{2} \) |
| 97 | \( 1 + (-0.923 - 0.617i)T + (0.382 + 0.923i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00433407340217327775095825659, −10.66423438098018267897514838197, −9.437381080763831838112029411767, −8.953623430415381843140096753297, −7.910900246166298277852094285835, −6.53943687973541441669127752627, −5.06198050948968082724024420023, −4.24820270240385109453908043735, −3.07685623229264143913271079430, −2.05391184680140060346904513205,
2.38491269646857317698040132903, 3.76122532379670187670661762304, 4.70964419226433234520834084455, 6.21166801826983107110790740386, 6.86458963035095939023309669031, 8.042044319975557565369528165432, 8.480421082463115911670913772440, 9.459794535966731536975946083750, 10.53166362419947117236275623006, 11.97301678649572383370574024464