Properties

Label 2-408-1.1-c1-0-6
Degree $2$
Conductor $408$
Sign $-1$
Analytic cond. $3.25789$
Root an. cond. $1.80496$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 1.56·5-s − 5.12·7-s + 9-s − 2.43·11-s − 3.56·13-s − 1.56·15-s − 17-s + 4.68·19-s + 5.12·21-s − 7.56·23-s − 2.56·25-s − 27-s − 7.12·29-s + 8.24·31-s + 2.43·33-s − 8·35-s − 4·37-s + 3.56·39-s − 2.68·41-s − 4.68·43-s + 1.56·45-s − 0.876·47-s + 19.2·49-s + 51-s + 6·53-s − 3.80·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.698·5-s − 1.93·7-s + 0.333·9-s − 0.735·11-s − 0.987·13-s − 0.403·15-s − 0.242·17-s + 1.07·19-s + 1.11·21-s − 1.57·23-s − 0.512·25-s − 0.192·27-s − 1.32·29-s + 1.48·31-s + 0.424·33-s − 1.35·35-s − 0.657·37-s + 0.570·39-s − 0.419·41-s − 0.714·43-s + 0.232·45-s − 0.127·47-s + 2.74·49-s + 0.140·51-s + 0.824·53-s − 0.513·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(408\)    =    \(2^{3} \cdot 3 \cdot 17\)
Sign: $-1$
Analytic conductor: \(3.25789\)
Root analytic conductor: \(1.80496\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 408,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 - 1.56T + 5T^{2} \)
7 \( 1 + 5.12T + 7T^{2} \)
11 \( 1 + 2.43T + 11T^{2} \)
13 \( 1 + 3.56T + 13T^{2} \)
19 \( 1 - 4.68T + 19T^{2} \)
23 \( 1 + 7.56T + 23T^{2} \)
29 \( 1 + 7.12T + 29T^{2} \)
31 \( 1 - 8.24T + 31T^{2} \)
37 \( 1 + 4T + 37T^{2} \)
41 \( 1 + 2.68T + 41T^{2} \)
43 \( 1 + 4.68T + 43T^{2} \)
47 \( 1 + 0.876T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 13.3T + 59T^{2} \)
61 \( 1 + 4T + 61T^{2} \)
67 \( 1 - 12T + 67T^{2} \)
71 \( 1 - 11.3T + 71T^{2} \)
73 \( 1 - 8.24T + 73T^{2} \)
79 \( 1 - 2T + 79T^{2} \)
83 \( 1 - 7.12T + 83T^{2} \)
89 \( 1 - 9.12T + 89T^{2} \)
97 \( 1 - 1.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51702695396385956953822481930, −9.777417715972448284387164144686, −9.506182534472836331713918150557, −7.85146766862393415742459487371, −6.79812835845347119190101470810, −6.02854530138363561052310094010, −5.18783724358565458895793328434, −3.62593992355196624722673370039, −2.37575072165824875931780526192, 0, 2.37575072165824875931780526192, 3.62593992355196624722673370039, 5.18783724358565458895793328434, 6.02854530138363561052310094010, 6.79812835845347119190101470810, 7.85146766862393415742459487371, 9.506182534472836331713918150557, 9.777417715972448284387164144686, 10.51702695396385956953822481930

Graph of the $Z$-function along the critical line