Properties

Label 2-40656-1.1-c1-0-46
Degree $2$
Conductor $40656$
Sign $-1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 13-s + 15-s − 4·17-s + 3·19-s + 21-s − 6·23-s − 4·25-s − 27-s − 7·29-s − 4·31-s + 35-s + 37-s + 39-s + 4·41-s − 2·43-s − 45-s − 7·47-s + 49-s + 4·51-s + 10·53-s − 3·57-s + 9·59-s + 2·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.277·13-s + 0.258·15-s − 0.970·17-s + 0.688·19-s + 0.218·21-s − 1.25·23-s − 4/5·25-s − 0.192·27-s − 1.29·29-s − 0.718·31-s + 0.169·35-s + 0.164·37-s + 0.160·39-s + 0.624·41-s − 0.304·43-s − 0.149·45-s − 1.02·47-s + 1/7·49-s + 0.560·51-s + 1.37·53-s − 0.397·57-s + 1.17·59-s + 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.12628408383029, −14.61124636691851, −13.84338211048202, −13.49071884459585, −12.85690379623675, −12.41229722313769, −11.86779975132808, −11.25547089300016, −11.13318820609561, −10.25545598527374, −9.727460030391878, −9.407427062262207, −8.615675207667735, −8.005283640186272, −7.473477698580643, −6.944694173345396, −6.365532557269228, −5.717283937927409, −5.267332659095005, −4.520087239838018, −3.788039492329146, −3.558272437680499, −2.334206718846888, −1.934427477885446, −0.7341433067831738, 0, 0.7341433067831738, 1.934427477885446, 2.334206718846888, 3.558272437680499, 3.788039492329146, 4.520087239838018, 5.267332659095005, 5.717283937927409, 6.365532557269228, 6.944694173345396, 7.473477698580643, 8.005283640186272, 8.615675207667735, 9.407427062262207, 9.727460030391878, 10.25545598527374, 11.13318820609561, 11.25547089300016, 11.86779975132808, 12.41229722313769, 12.85690379623675, 13.49071884459585, 13.84338211048202, 14.61124636691851, 15.12628408383029

Graph of the $Z$-function along the critical line