Properties

Label 2-4056-13.12-c1-0-33
Degree $2$
Conductor $4056$
Sign $0.960 - 0.277i$
Analytic cond. $32.3873$
Root an. cond. $5.69098$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 1.73i·5-s − 0.732i·7-s + 9-s − 0.732i·11-s − 1.73i·15-s + 3.73·17-s + 1.26i·19-s + 0.732i·21-s + 2.19·23-s + 2.00·25-s − 27-s − 5.92·29-s − 5.46i·31-s + 0.732i·33-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.774i·5-s − 0.276i·7-s + 0.333·9-s − 0.220i·11-s − 0.447i·15-s + 0.905·17-s + 0.290i·19-s + 0.159i·21-s + 0.457·23-s + 0.400·25-s − 0.192·27-s − 1.10·29-s − 0.981i·31-s + 0.127i·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.960 - 0.277i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.960 - 0.277i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4056\)    =    \(2^{3} \cdot 3 \cdot 13^{2}\)
Sign: $0.960 - 0.277i$
Analytic conductor: \(32.3873\)
Root analytic conductor: \(5.69098\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4056} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4056,\ (\ :1/2),\ 0.960 - 0.277i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.516364297\)
\(L(\frac12)\) \(\approx\) \(1.516364297\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 1.73iT - 5T^{2} \)
7 \( 1 + 0.732iT - 7T^{2} \)
11 \( 1 + 0.732iT - 11T^{2} \)
17 \( 1 - 3.73T + 17T^{2} \)
19 \( 1 - 1.26iT - 19T^{2} \)
23 \( 1 - 2.19T + 23T^{2} \)
29 \( 1 + 5.92T + 29T^{2} \)
31 \( 1 + 5.46iT - 31T^{2} \)
37 \( 1 - 8.46iT - 37T^{2} \)
41 \( 1 + 5iT - 41T^{2} \)
43 \( 1 + 1.80T + 43T^{2} \)
47 \( 1 + 6.73iT - 47T^{2} \)
53 \( 1 - 5.92T + 53T^{2} \)
59 \( 1 - 59T^{2} \)
61 \( 1 + 9.73T + 61T^{2} \)
67 \( 1 + 5.26iT - 67T^{2} \)
71 \( 1 - 8.19iT - 71T^{2} \)
73 \( 1 + 1.19iT - 73T^{2} \)
79 \( 1 - 12.3T + 79T^{2} \)
83 \( 1 + 15.6iT - 83T^{2} \)
89 \( 1 + 2.53iT - 89T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.389568903447520516497478884839, −7.51460007955168020204549155846, −7.07119292916114980473388232236, −6.22136133266763004492848220567, −5.61681419391829919009340495490, −4.79019245267763905112910036990, −3.78131961243864351261739703205, −3.12356113737960341627104580476, −1.97715606931924509452363607383, −0.74117823267867328302180158004, 0.74179462989467794669700509094, 1.70627534038878869467872676334, 2.92402514466925919784393918630, 3.94117289735092349159484857397, 4.81833225325924372773988265049, 5.38088188903049712745672033040, 6.02965099845121192360130328424, 6.99598472583678180892689646667, 7.60001542144809987231069724434, 8.466621071268487991862976445857

Graph of the $Z$-function along the critical line