| L(s) = 1 | − 3-s + 1.73i·5-s − 0.732i·7-s + 9-s − 0.732i·11-s − 1.73i·15-s + 3.73·17-s + 1.26i·19-s + 0.732i·21-s + 2.19·23-s + 2.00·25-s − 27-s − 5.92·29-s − 5.46i·31-s + 0.732i·33-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 0.774i·5-s − 0.276i·7-s + 0.333·9-s − 0.220i·11-s − 0.447i·15-s + 0.905·17-s + 0.290i·19-s + 0.159i·21-s + 0.457·23-s + 0.400·25-s − 0.192·27-s − 1.10·29-s − 0.981i·31-s + 0.127i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.960 - 0.277i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.960 - 0.277i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.516364297\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.516364297\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 - 1.73iT - 5T^{2} \) |
| 7 | \( 1 + 0.732iT - 7T^{2} \) |
| 11 | \( 1 + 0.732iT - 11T^{2} \) |
| 17 | \( 1 - 3.73T + 17T^{2} \) |
| 19 | \( 1 - 1.26iT - 19T^{2} \) |
| 23 | \( 1 - 2.19T + 23T^{2} \) |
| 29 | \( 1 + 5.92T + 29T^{2} \) |
| 31 | \( 1 + 5.46iT - 31T^{2} \) |
| 37 | \( 1 - 8.46iT - 37T^{2} \) |
| 41 | \( 1 + 5iT - 41T^{2} \) |
| 43 | \( 1 + 1.80T + 43T^{2} \) |
| 47 | \( 1 + 6.73iT - 47T^{2} \) |
| 53 | \( 1 - 5.92T + 53T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + 9.73T + 61T^{2} \) |
| 67 | \( 1 + 5.26iT - 67T^{2} \) |
| 71 | \( 1 - 8.19iT - 71T^{2} \) |
| 73 | \( 1 + 1.19iT - 73T^{2} \) |
| 79 | \( 1 - 12.3T + 79T^{2} \) |
| 83 | \( 1 + 15.6iT - 83T^{2} \) |
| 89 | \( 1 + 2.53iT - 89T^{2} \) |
| 97 | \( 1 - 10iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.389568903447520516497478884839, −7.51460007955168020204549155846, −7.07119292916114980473388232236, −6.22136133266763004492848220567, −5.61681419391829919009340495490, −4.79019245267763905112910036990, −3.78131961243864351261739703205, −3.12356113737960341627104580476, −1.97715606931924509452363607383, −0.74117823267867328302180158004,
0.74179462989467794669700509094, 1.70627534038878869467872676334, 2.92402514466925919784393918630, 3.94117289735092349159484857397, 4.81833225325924372773988265049, 5.38088188903049712745672033040, 6.02965099845121192360130328424, 6.99598472583678180892689646667, 7.60001542144809987231069724434, 8.466621071268487991862976445857