Properties

Label 2-4056-1.1-c1-0-18
Degree $2$
Conductor $4056$
Sign $1$
Analytic cond. $32.3873$
Root an. cond. $5.69098$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s − 2·15-s + 2·17-s + 4·19-s − 25-s + 27-s + 6·29-s + 2·37-s − 6·41-s − 12·43-s − 2·45-s + 4·47-s − 7·49-s + 2·51-s + 6·53-s + 4·57-s + 8·59-s − 2·61-s − 4·67-s + 12·71-s + 14·73-s − 75-s + 81-s − 8·83-s − 4·85-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s − 0.516·15-s + 0.485·17-s + 0.917·19-s − 1/5·25-s + 0.192·27-s + 1.11·29-s + 0.328·37-s − 0.937·41-s − 1.82·43-s − 0.298·45-s + 0.583·47-s − 49-s + 0.280·51-s + 0.824·53-s + 0.529·57-s + 1.04·59-s − 0.256·61-s − 0.488·67-s + 1.42·71-s + 1.63·73-s − 0.115·75-s + 1/9·81-s − 0.878·83-s − 0.433·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4056\)    =    \(2^{3} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(32.3873\)
Root analytic conductor: \(5.69098\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.972166420\)
\(L(\frac12)\) \(\approx\) \(1.972166420\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.277330555848996337592461167239, −7.85749416685147120585350583537, −7.11646809983531549988243962761, −6.40158815402073049865047684610, −5.30378379001641513519044692133, −4.61671937527489946798974678455, −3.62541556518995470040403604896, −3.19166320207550947955763770245, −2.02833356692568283872392736149, −0.78722055676041492708430177901, 0.78722055676041492708430177901, 2.02833356692568283872392736149, 3.19166320207550947955763770245, 3.62541556518995470040403604896, 4.61671937527489946798974678455, 5.30378379001641513519044692133, 6.40158815402073049865047684610, 7.11646809983531549988243962761, 7.85749416685147120585350583537, 8.277330555848996337592461167239

Graph of the $Z$-function along the critical line