Properties

Label 2-405-9.4-c3-0-36
Degree $2$
Conductor $405$
Sign $-0.766 + 0.642i$
Analytic cond. $23.8957$
Root an. cond. $4.88833$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (3.5 − 6.06i)4-s + (−2.5 + 4.33i)5-s + (12 + 20.7i)7-s − 15·8-s + 5·10-s + (−26 − 45.0i)11-s + (−11 + 19.0i)13-s + (12 − 20.7i)14-s + (−20.5 − 35.5i)16-s − 14·17-s − 20·19-s + (17.5 + 30.3i)20-s + (−25.9 + 45.0i)22-s + (84 − 145. i)23-s + ⋯
L(s)  = 1  + (−0.176 − 0.306i)2-s + (0.437 − 0.757i)4-s + (−0.223 + 0.387i)5-s + (0.647 + 1.12i)7-s − 0.662·8-s + 0.158·10-s + (−0.712 − 1.23i)11-s + (−0.234 + 0.406i)13-s + (0.229 − 0.396i)14-s + (−0.320 − 0.554i)16-s − 0.199·17-s − 0.241·19-s + (0.195 + 0.338i)20-s + (−0.251 + 0.436i)22-s + (0.761 − 1.31i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $-0.766 + 0.642i$
Analytic conductor: \(23.8957\)
Root analytic conductor: \(4.88833\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (271, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :3/2),\ -0.766 + 0.642i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.096420320\)
\(L(\frac12)\) \(\approx\) \(1.096420320\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (2.5 - 4.33i)T \)
good2 \( 1 + (0.5 + 0.866i)T + (-4 + 6.92i)T^{2} \)
7 \( 1 + (-12 - 20.7i)T + (-171.5 + 297. i)T^{2} \)
11 \( 1 + (26 + 45.0i)T + (-665.5 + 1.15e3i)T^{2} \)
13 \( 1 + (11 - 19.0i)T + (-1.09e3 - 1.90e3i)T^{2} \)
17 \( 1 + 14T + 4.91e3T^{2} \)
19 \( 1 + 20T + 6.85e3T^{2} \)
23 \( 1 + (-84 + 145. i)T + (-6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + (115 + 199. i)T + (-1.21e4 + 2.11e4i)T^{2} \)
31 \( 1 + (-144 + 249. i)T + (-1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + 34T + 5.06e4T^{2} \)
41 \( 1 + (61 - 105. i)T + (-3.44e4 - 5.96e4i)T^{2} \)
43 \( 1 + (-94 - 162. i)T + (-3.97e4 + 6.88e4i)T^{2} \)
47 \( 1 + (128 + 221. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + 338T + 1.48e5T^{2} \)
59 \( 1 + (50 - 86.6i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (371 + 642. i)T + (-1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (-42 + 72.7i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + 328T + 3.57e5T^{2} \)
73 \( 1 + 38T + 3.89e5T^{2} \)
79 \( 1 + (-120 - 207. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + (606 + 1.04e3i)T + (-2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 - 330T + 7.04e5T^{2} \)
97 \( 1 + (433 + 749. i)T + (-4.56e5 + 7.90e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.69006454888089538715874193701, −9.637851764075832224370095580184, −8.691881111920917336793162609273, −7.86913933031781824076044391248, −6.43846183948833700156271911262, −5.79321559789760616985500260299, −4.70030898147673782840078811960, −2.90135624741853459367663268975, −2.10226978541862569255523420520, −0.36940359264553153231060128000, 1.54681215631816145620850469354, 3.11898570828131444014454487440, 4.34299413072970742879093363113, 5.27259794777215097096801024219, 6.98395873566930954827219961034, 7.40245555299381134868088824153, 8.181549506432025174555224532610, 9.223814539913341139283393934071, 10.41875733219727150687167694112, 11.10017514217526254025031349374

Graph of the $Z$-function along the critical line