L(s) = 1 | + (−0.5 − 0.866i)2-s + (3.5 − 6.06i)4-s + (−2.5 + 4.33i)5-s + (12 + 20.7i)7-s − 15·8-s + 5·10-s + (−26 − 45.0i)11-s + (−11 + 19.0i)13-s + (12 − 20.7i)14-s + (−20.5 − 35.5i)16-s − 14·17-s − 20·19-s + (17.5 + 30.3i)20-s + (−25.9 + 45.0i)22-s + (84 − 145. i)23-s + ⋯ |
L(s) = 1 | + (−0.176 − 0.306i)2-s + (0.437 − 0.757i)4-s + (−0.223 + 0.387i)5-s + (0.647 + 1.12i)7-s − 0.662·8-s + 0.158·10-s + (−0.712 − 1.23i)11-s + (−0.234 + 0.406i)13-s + (0.229 − 0.396i)14-s + (−0.320 − 0.554i)16-s − 0.199·17-s − 0.241·19-s + (0.195 + 0.338i)20-s + (−0.251 + 0.436i)22-s + (0.761 − 1.31i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.096420320\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.096420320\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.5 - 4.33i)T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T + (-4 + 6.92i)T^{2} \) |
| 7 | \( 1 + (-12 - 20.7i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (26 + 45.0i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (11 - 19.0i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + 14T + 4.91e3T^{2} \) |
| 19 | \( 1 + 20T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-84 + 145. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (115 + 199. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-144 + 249. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 34T + 5.06e4T^{2} \) |
| 41 | \( 1 + (61 - 105. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-94 - 162. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (128 + 221. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + 338T + 1.48e5T^{2} \) |
| 59 | \( 1 + (50 - 86.6i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (371 + 642. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-42 + 72.7i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 328T + 3.57e5T^{2} \) |
| 73 | \( 1 + 38T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-120 - 207. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (606 + 1.04e3i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 330T + 7.04e5T^{2} \) |
| 97 | \( 1 + (433 + 749. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69006454888089538715874193701, −9.637851764075832224370095580184, −8.691881111920917336793162609273, −7.86913933031781824076044391248, −6.43846183948833700156271911262, −5.79321559789760616985500260299, −4.70030898147673782840078811960, −2.90135624741853459367663268975, −2.10226978541862569255523420520, −0.36940359264553153231060128000,
1.54681215631816145620850469354, 3.11898570828131444014454487440, 4.34299413072970742879093363113, 5.27259794777215097096801024219, 6.98395873566930954827219961034, 7.40245555299381134868088824153, 8.181549506432025174555224532610, 9.223814539913341139283393934071, 10.41875733219727150687167694112, 11.10017514217526254025031349374