L(s) = 1 | + (0.366 + 0.633i)2-s + (3.73 − 6.46i)4-s + (−2.5 + 4.33i)5-s + (3.46 + 6i)7-s + 11.3·8-s − 3.66·10-s + (−18.7 − 32.4i)11-s + (19.4 − 33.7i)13-s + (−2.53 + 4.39i)14-s + (−25.7 − 44.5i)16-s − 80.9·17-s + 112.·19-s + (18.6 + 32.3i)20-s + (13.7 − 23.7i)22-s + (−6.71 + 11.6i)23-s + ⋯ |
L(s) = 1 | + (0.129 + 0.224i)2-s + (0.466 − 0.808i)4-s + (−0.223 + 0.387i)5-s + (0.187 + 0.323i)7-s + 0.500·8-s − 0.115·10-s + (−0.513 − 0.890i)11-s + (0.415 − 0.719i)13-s + (−0.0484 + 0.0838i)14-s + (−0.401 − 0.695i)16-s − 1.15·17-s + 1.36·19-s + (0.208 + 0.361i)20-s + (0.133 − 0.230i)22-s + (−0.0608 + 0.105i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.878567138\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.878567138\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.5 - 4.33i)T \) |
good | 2 | \( 1 + (-0.366 - 0.633i)T + (-4 + 6.92i)T^{2} \) |
| 7 | \( 1 + (-3.46 - 6i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (18.7 + 32.4i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-19.4 + 33.7i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + 80.9T + 4.91e3T^{2} \) |
| 19 | \( 1 - 112.T + 6.85e3T^{2} \) |
| 23 | \( 1 + (6.71 - 11.6i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-21.7 - 37.6i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-74.8 + 129. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 218.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-186. + 322. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (230. + 398. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-107. - 185. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + 445.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-200. + 347. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (0.723 + 1.25i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-408. + 706. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 147.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 432.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (192. + 332. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-630. - 1.09e3i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 + 513T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-548. - 949. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83182528983817546722339263334, −9.870494731795501038752867357680, −8.741307382200954612762078789519, −7.74202189957773208733922161351, −6.76837503013425195667533421007, −5.78834962370098925410542698939, −5.07246413061253096775066640046, −3.45752239275726090823309914421, −2.21792792774659061257923252139, −0.59654086940795914222944995266,
1.53167476644488562601502681461, 2.83735845998290954577301072006, 4.12383091107829019293933856820, 4.89955865502255272083603786556, 6.53671508768050018518937398296, 7.35795913310593485222133070998, 8.170062651296133527567426691680, 9.151635966863806415164833379910, 10.24792082253639466098691411483, 11.28906878482197710473035462247