Properties

Label 2-405-45.7-c2-0-35
Degree 22
Conductor 405405
Sign 0.176+0.984i0.176 + 0.984i
Analytic cond. 11.035411.0354
Root an. cond. 3.321963.32196
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.15 + 0.578i)2-s + (0.866 − 0.5i)4-s + (3.31 − 3.74i)5-s + (6.83 − 1.83i)7-s + (4.74 − 4.74i)8-s + (−5 + 10i)10-s + (7.90 − 13.6i)11-s + (−13.6 − 3.66i)13-s + (−13.6 + 7.90i)14-s + (−9.49 + 16.4i)16-s + (−3.16 − 3.16i)17-s + 18i·19-s + (1.00 − 4.89i)20-s + (−9.15 + 34.1i)22-s + (4.31 + 1.15i)23-s + ⋯
L(s)  = 1  + (−1.07 + 0.289i)2-s + (0.216 − 0.125i)4-s + (0.663 − 0.748i)5-s + (0.975 − 0.261i)7-s + (0.592 − 0.592i)8-s + (−0.5 + i)10-s + (0.718 − 1.24i)11-s + (−1.05 − 0.281i)13-s + (−0.978 + 0.564i)14-s + (−0.593 + 1.02i)16-s + (−0.186 − 0.186i)17-s + 0.947i·19-s + (0.0501 − 0.244i)20-s + (−0.415 + 1.55i)22-s + (0.187 + 0.0503i)23-s + ⋯

Functional equation

Λ(s)=(405s/2ΓC(s)L(s)=((0.176+0.984i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.176 + 0.984i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(405s/2ΓC(s+1)L(s)=((0.176+0.984i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.176 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 405405    =    3453^{4} \cdot 5
Sign: 0.176+0.984i0.176 + 0.984i
Analytic conductor: 11.035411.0354
Root analytic conductor: 3.321963.32196
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ405(217,)\chi_{405} (217, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 405, ( :1), 0.176+0.984i)(2,\ 405,\ (\ :1),\ 0.176 + 0.984i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.7335250.613839i0.733525 - 0.613839i
L(12)L(\frac12) \approx 0.7335250.613839i0.733525 - 0.613839i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1+(3.31+3.74i)T 1 + (-3.31 + 3.74i)T
good2 1+(2.150.578i)T+(3.462i)T2 1 + (2.15 - 0.578i)T + (3.46 - 2i)T^{2}
7 1+(6.83+1.83i)T+(42.424.5i)T2 1 + (-6.83 + 1.83i)T + (42.4 - 24.5i)T^{2}
11 1+(7.90+13.6i)T+(60.5104.i)T2 1 + (-7.90 + 13.6i)T + (-60.5 - 104. i)T^{2}
13 1+(13.6+3.66i)T+(146.+84.5i)T2 1 + (13.6 + 3.66i)T + (146. + 84.5i)T^{2}
17 1+(3.16+3.16i)T+289iT2 1 + (3.16 + 3.16i)T + 289iT^{2}
19 118iT361T2 1 - 18iT - 361T^{2}
23 1+(4.311.15i)T+(458.+264.5i)T2 1 + (-4.31 - 1.15i)T + (458. + 264.5i)T^{2}
29 1+(41.0+23.7i)T+(420.5+728.i)T2 1 + (41.0 + 23.7i)T + (420.5 + 728. i)T^{2}
31 1+(4+6.92i)T+(480.5+832.i)T2 1 + (4 + 6.92i)T + (-480.5 + 832. i)T^{2}
37 1+(1010i)T+1.36e3iT2 1 + (-10 - 10i)T + 1.36e3iT^{2}
41 1+(15.8+27.3i)T+(840.5+1.45e3i)T2 1 + (15.8 + 27.3i)T + (-840.5 + 1.45e3i)T^{2}
43 1+(3.6613.6i)T+(1.60e3+924.5i)T2 1 + (-3.66 - 13.6i)T + (-1.60e3 + 924.5i)T^{2}
47 1+(56.1+15.0i)T+(1.91e31.10e3i)T2 1 + (-56.1 + 15.0i)T + (1.91e3 - 1.10e3i)T^{2}
53 1+(25.2+25.2i)T2.80e3iT2 1 + (-25.2 + 25.2i)T - 2.80e3iT^{2}
59 1+(41.023.7i)T+(1.74e33.01e3i)T2 1 + (41.0 - 23.7i)T + (1.74e3 - 3.01e3i)T^{2}
61 1+(29+50.2i)T+(1.86e33.22e3i)T2 1 + (-29 + 50.2i)T + (-1.86e3 - 3.22e3i)T^{2}
67 1+(25.6+95.6i)T+(3.88e32.24e3i)T2 1 + (-25.6 + 95.6i)T + (-3.88e3 - 2.24e3i)T^{2}
71 1+63.2T+5.04e3T2 1 + 63.2T + 5.04e3T^{2}
73 1+(55+55i)T5.32e3iT2 1 + (-55 + 55i)T - 5.32e3iT^{2}
79 1+(10.3+6i)T+(3.12e3+5.40e3i)T2 1 + (10.3 + 6i)T + (3.12e3 + 5.40e3i)T^{2}
83 1+(19.673.4i)T+(5.96e3+3.44e3i)T2 1 + (-19.6 - 73.4i)T + (-5.96e3 + 3.44e3i)T^{2}
89 17.92e3T2 1 - 7.92e3T^{2}
97 1+(6.83+1.83i)T+(8.14e34.70e3i)T2 1 + (-6.83 + 1.83i)T + (8.14e3 - 4.70e3i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.59627136880629560482243843667, −9.665158645539093076916396473636, −9.001803588895540276673440069570, −8.176074845572861318916431336845, −7.50222469902229662242805786390, −6.15432915649915668382502163888, −5.08754255937494039780055974040, −3.93024760374787806435654056782, −1.84061328904944644722237138066, −0.62317473013916487506518725824, 1.60851625053961948931938487570, 2.41338314048273461268797627623, 4.46681186747022836630959840992, 5.39336920365767152210646730366, 6.98880972242801253458531872429, 7.48376854104870079695094137878, 8.842042476356393778363611841104, 9.427898970200885379536157370781, 10.19040000567315746984462102111, 11.05939406930642730020779109301

Graph of the ZZ-function along the critical line