L(s) = 1 | + (0.578 − 2.15i)2-s + (−0.866 − 0.5i)4-s + (−4.89 − 1.00i)5-s + (−1.83 + 6.83i)7-s + (4.74 − 4.74i)8-s + (−5 + 10.0i)10-s + (7.90 + 13.6i)11-s + (3.66 + 13.6i)13-s + (13.6 + 7.90i)14-s + (−9.49 − 16.4i)16-s + (−3.16 − 3.16i)17-s + 18i·19-s + (3.74 + 3.31i)20-s + (34.1 − 9.15i)22-s + (−1.15 − 4.31i)23-s + ⋯ |
L(s) = 1 | + (0.289 − 1.07i)2-s + (−0.216 − 0.125i)4-s + (−0.979 − 0.200i)5-s + (−0.261 + 0.975i)7-s + (0.592 − 0.592i)8-s + (−0.5 + 1.00i)10-s + (0.718 + 1.24i)11-s + (0.281 + 1.05i)13-s + (0.978 + 0.564i)14-s + (−0.593 − 1.02i)16-s + (−0.186 − 0.186i)17-s + 0.947i·19-s + (0.187 + 0.165i)20-s + (1.55 − 0.415i)22-s + (−0.0503 − 0.187i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.00266i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 - 0.00266i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.70389 + 0.00226643i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.70389 + 0.00226643i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (4.89 + 1.00i)T \) |
good | 2 | \( 1 + (-0.578 + 2.15i)T + (-3.46 - 2i)T^{2} \) |
| 7 | \( 1 + (1.83 - 6.83i)T + (-42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (-7.90 - 13.6i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-3.66 - 13.6i)T + (-146. + 84.5i)T^{2} \) |
| 17 | \( 1 + (3.16 + 3.16i)T + 289iT^{2} \) |
| 19 | \( 1 - 18iT - 361T^{2} \) |
| 23 | \( 1 + (1.15 + 4.31i)T + (-458. + 264.5i)T^{2} \) |
| 29 | \( 1 + (-41.0 + 23.7i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (4 - 6.92i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-10 - 10i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (15.8 - 27.3i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (13.6 + 3.66i)T + (1.60e3 + 924.5i)T^{2} \) |
| 47 | \( 1 + (15.0 - 56.1i)T + (-1.91e3 - 1.10e3i)T^{2} \) |
| 53 | \( 1 + (-25.2 + 25.2i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (-41.0 - 23.7i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-29 - 50.2i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (95.6 - 25.6i)T + (3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + 63.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-55 + 55i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + (-10.3 + 6i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (73.4 + 19.6i)T + (5.96e3 + 3.44e3i)T^{2} \) |
| 89 | \( 1 - 7.92e3T^{2} \) |
| 97 | \( 1 + (1.83 - 6.83i)T + (-8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.44543238360659463958978909271, −10.23950451974616318225558026649, −9.417683950652992035257353646834, −8.457638138752282018544116013472, −7.27593733338025409938049171217, −6.37509540000944331689789599986, −4.64897182936310250161074030089, −4.01277910219000292246981813985, −2.74751683014254781328319201531, −1.51740588257524858104384594683,
0.72917276988044757311693842144, 3.19958990164059556225284551991, 4.18783359091639900176481467873, 5.38358008007913998578181381293, 6.54451269323554901768803350043, 7.10140961420470626864677611123, 8.101782643015073741175412665187, 8.734703464914194911983702069210, 10.41890353664911891320886534862, 10.96246196909311813376141449350