L(s) = 1 | + (−2.15 − 0.578i)2-s + (0.866 + 0.5i)4-s + (3.31 + 3.74i)5-s + (6.83 + 1.83i)7-s + (4.74 + 4.74i)8-s + (−5 − 10i)10-s + (7.90 + 13.6i)11-s + (−13.6 + 3.66i)13-s + (−13.6 − 7.90i)14-s + (−9.49 − 16.4i)16-s + (−3.16 + 3.16i)17-s − 18i·19-s + (1.00 + 4.89i)20-s + (−9.15 − 34.1i)22-s + (4.31 − 1.15i)23-s + ⋯ |
L(s) = 1 | + (−1.07 − 0.289i)2-s + (0.216 + 0.125i)4-s + (0.663 + 0.748i)5-s + (0.975 + 0.261i)7-s + (0.592 + 0.592i)8-s + (−0.5 − i)10-s + (0.718 + 1.24i)11-s + (−1.05 + 0.281i)13-s + (−0.978 − 0.564i)14-s + (−0.593 − 1.02i)16-s + (−0.186 + 0.186i)17-s − 0.947i·19-s + (0.0501 + 0.244i)20-s + (−0.415 − 1.55i)22-s + (0.187 − 0.0503i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.176 - 0.984i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.176 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.733525 + 0.613839i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.733525 + 0.613839i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-3.31 - 3.74i)T \) |
good | 2 | \( 1 + (2.15 + 0.578i)T + (3.46 + 2i)T^{2} \) |
| 7 | \( 1 + (-6.83 - 1.83i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-7.90 - 13.6i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (13.6 - 3.66i)T + (146. - 84.5i)T^{2} \) |
| 17 | \( 1 + (3.16 - 3.16i)T - 289iT^{2} \) |
| 19 | \( 1 + 18iT - 361T^{2} \) |
| 23 | \( 1 + (-4.31 + 1.15i)T + (458. - 264.5i)T^{2} \) |
| 29 | \( 1 + (41.0 - 23.7i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (4 - 6.92i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-10 + 10i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (15.8 - 27.3i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-3.66 + 13.6i)T + (-1.60e3 - 924.5i)T^{2} \) |
| 47 | \( 1 + (-56.1 - 15.0i)T + (1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (-25.2 - 25.2i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (41.0 + 23.7i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-29 - 50.2i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-25.6 - 95.6i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + 63.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-55 - 55i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (10.3 - 6i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-19.6 + 73.4i)T + (-5.96e3 - 3.44e3i)T^{2} \) |
| 89 | \( 1 - 7.92e3T^{2} \) |
| 97 | \( 1 + (-6.83 - 1.83i)T + (8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.05939406930642730020779109301, −10.19040000567315746984462102111, −9.427898970200885379536157370781, −8.842042476356393778363611841104, −7.48376854104870079695094137878, −6.98880972242801253458531872429, −5.39336920365767152210646730366, −4.46681186747022836630959840992, −2.41338314048273461268797627623, −1.60851625053961948931938487570,
0.62317473013916487506518725824, 1.84061328904944644722237138066, 3.93024760374787806435654056782, 5.08754255937494039780055974040, 6.15432915649915668382502163888, 7.50222469902229662242805786390, 8.176074845572861318916431336845, 9.001803588895540276673440069570, 9.665158645539093076916396473636, 10.59627136880629560482243843667