L(s) = 1 | + (−1.94 + 1.36i)2-s + (1.25 − 3.43i)4-s + (−0.278 − 2.21i)5-s + (−1.02 + 2.19i)7-s + (1.02 + 3.81i)8-s + (3.57 + 3.94i)10-s + (−0.00275 + 0.00327i)11-s + (0.792 − 1.13i)13-s + (−1.00 − 5.68i)14-s + (−1.59 − 1.33i)16-s + (−0.510 + 1.90i)17-s + (−6.69 − 3.86i)19-s + (−7.98 − 1.81i)20-s + (0.000887 − 0.0101i)22-s + (−6.70 + 3.12i)23-s + ⋯ |
L(s) = 1 | + (−1.37 + 0.964i)2-s + (0.626 − 1.71i)4-s + (−0.124 − 0.992i)5-s + (−0.387 + 0.830i)7-s + (0.361 + 1.34i)8-s + (1.12 + 1.24i)10-s + (−0.000829 + 0.000988i)11-s + (0.219 − 0.313i)13-s + (−0.267 − 1.51i)14-s + (−0.398 − 0.334i)16-s + (−0.123 + 0.461i)17-s + (−1.53 − 0.886i)19-s + (−1.78 − 0.406i)20-s + (0.000189 − 0.00216i)22-s + (−1.39 + 0.651i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(−0.318+0.948i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(−0.318+0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.318+0.948i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(8,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1/2), −0.318+0.948i)
|
Particular Values
L(1) |
≈ |
0.0966400−0.134368i |
L(21) |
≈ |
0.0966400−0.134368i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.278+2.21i)T |
good | 2 | 1+(1.94−1.36i)T+(0.684−1.87i)T2 |
| 7 | 1+(1.02−2.19i)T+(−4.49−5.36i)T2 |
| 11 | 1+(0.00275−0.00327i)T+(−1.91−10.8i)T2 |
| 13 | 1+(−0.792+1.13i)T+(−4.44−12.2i)T2 |
| 17 | 1+(0.510−1.90i)T+(−14.7−8.5i)T2 |
| 19 | 1+(6.69+3.86i)T+(9.5+16.4i)T2 |
| 23 | 1+(6.70−3.12i)T+(14.7−17.6i)T2 |
| 29 | 1+(−1.74+9.87i)T+(−27.2−9.91i)T2 |
| 31 | 1+(5.62+2.04i)T+(23.7+19.9i)T2 |
| 37 | 1+(−1.68−0.451i)T+(32.0+18.5i)T2 |
| 41 | 1+(−2.95+0.520i)T+(38.5−14.0i)T2 |
| 43 | 1+(0.628+7.18i)T+(−42.3+7.46i)T2 |
| 47 | 1+(1.86+0.871i)T+(30.2+36.0i)T2 |
| 53 | 1+(1.25−1.25i)T−53iT2 |
| 59 | 1+(0.763−0.640i)T+(10.2−58.1i)T2 |
| 61 | 1+(6.39−2.32i)T+(46.7−39.2i)T2 |
| 67 | 1+(7.45+5.21i)T+(22.9+62.9i)T2 |
| 71 | 1+(8.32−4.80i)T+(35.5−61.4i)T2 |
| 73 | 1+(2.77−0.744i)T+(63.2−36.5i)T2 |
| 79 | 1+(−6.95−1.22i)T+(74.2+27.0i)T2 |
| 83 | 1+(5.84+8.34i)T+(−28.3+77.9i)T2 |
| 89 | 1+(3.03−5.26i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−12.5+1.09i)T+(95.5−16.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.61731803255707141919051188579, −9.663146263014543987397305514360, −8.968087546051583194432931890998, −8.352322773310351476470853519832, −7.57159031002297062721691733612, −6.20948009409687592127225562837, −5.73550220670186939349904729299, −4.21043709353206773076948138447, −2.01289694052453147979383130861, −0.16057895545516383469301059701,
1.81824273636983133504785966789, 3.09956013946915902033109507893, 4.10828301994651221823502962139, 6.25511265304052321855805698158, 7.15390328451871765729485573339, 8.018765185094681621282799405051, 8.962481956267687294265329200994, 10.00522794377417160329755594833, 10.55326523914850883811324216845, 11.06598639092247768997876439105