| L(s) = 1 | + (1.48 + 2.12i)2-s + (−1.60 + 4.41i)4-s + (−1.13 + 1.92i)5-s + (−2.68 − 1.25i)7-s + (−6.75 + 1.80i)8-s + (−5.77 + 0.451i)10-s + (1.00 − 1.19i)11-s + (3.28 + 2.29i)13-s + (−1.33 − 7.54i)14-s + (−6.66 − 5.59i)16-s + (−1.82 − 0.490i)17-s + (2.41 + 1.39i)19-s + (−6.68 − 8.11i)20-s + (4.02 + 0.352i)22-s + (3.16 + 6.78i)23-s + ⋯ |
| L(s) = 1 | + (1.04 + 1.49i)2-s + (−0.803 + 2.20i)4-s + (−0.507 + 0.861i)5-s + (−1.01 − 0.473i)7-s + (−2.38 + 0.639i)8-s + (−1.82 + 0.142i)10-s + (0.302 − 0.360i)11-s + (0.910 + 0.637i)13-s + (−0.355 − 2.01i)14-s + (−1.66 − 1.39i)16-s + (−0.443 − 0.118i)17-s + (0.553 + 0.319i)19-s + (−1.49 − 1.81i)20-s + (0.859 + 0.0751i)22-s + (0.659 + 1.41i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 + 0.194i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.980 + 0.194i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.170380 - 1.73126i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.170380 - 1.73126i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.13 - 1.92i)T \) |
| good | 2 | \( 1 + (-1.48 - 2.12i)T + (-0.684 + 1.87i)T^{2} \) |
| 7 | \( 1 + (2.68 + 1.25i)T + (4.49 + 5.36i)T^{2} \) |
| 11 | \( 1 + (-1.00 + 1.19i)T + (-1.91 - 10.8i)T^{2} \) |
| 13 | \( 1 + (-3.28 - 2.29i)T + (4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (1.82 + 0.490i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-2.41 - 1.39i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.16 - 6.78i)T + (-14.7 + 17.6i)T^{2} \) |
| 29 | \( 1 + (0.683 - 3.87i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (-5.45 - 1.98i)T + (23.7 + 19.9i)T^{2} \) |
| 37 | \( 1 + (-0.0847 + 0.316i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (6.26 - 1.10i)T + (38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (-0.582 + 0.0509i)T + (42.3 - 7.46i)T^{2} \) |
| 47 | \( 1 + (0.321 - 0.690i)T + (-30.2 - 36.0i)T^{2} \) |
| 53 | \( 1 + (5.57 + 5.57i)T + 53iT^{2} \) |
| 59 | \( 1 + (-7.84 + 6.57i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (-11.4 + 4.15i)T + (46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (-1.14 + 1.63i)T + (-22.9 - 62.9i)T^{2} \) |
| 71 | \( 1 + (-6.11 + 3.52i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1.05 + 3.93i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-12.9 - 2.28i)T + (74.2 + 27.0i)T^{2} \) |
| 83 | \( 1 + (-3.33 + 2.33i)T + (28.3 - 77.9i)T^{2} \) |
| 89 | \( 1 + (-4.23 + 7.33i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.696 - 7.95i)T + (-95.5 + 16.8i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89758494575323408849850736133, −11.10299669537791505741998652836, −9.736445853100281842854739804857, −8.618782153325927396971517117202, −7.62610691163413474577910007603, −6.68328531872735951443959922603, −6.43664040995331097812641772042, −5.11904148450439299643512488190, −3.70781623959915672977723279599, −3.37701898240466687590532272158,
0.857578839285124801100603679269, 2.56524940459032873141417096312, 3.63561838080034885480931011402, 4.54376142860549327009559312660, 5.55375562060548498552337690155, 6.57241544566175185116205080457, 8.388187319999732526084319451640, 9.274421472032927587578132776095, 10.06843697831560611489649609684, 11.05455132682455137874014426388