Properties

Label 2-405-135.128-c1-0-6
Degree $2$
Conductor $405$
Sign $-0.455 + 0.890i$
Analytic cond. $3.23394$
Root an. cond. $1.79831$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.81 − 0.846i)2-s + (1.29 + 1.54i)4-s + (−0.828 + 2.07i)5-s + (−2.21 + 0.193i)7-s + (−0.00834 − 0.0311i)8-s + (3.26 − 3.07i)10-s + (−1.09 − 0.193i)11-s + (−1.28 − 2.74i)13-s + (4.18 + 1.52i)14-s + (0.688 − 3.90i)16-s + (1.56 − 5.82i)17-s + (3.84 + 2.22i)19-s + (−4.28 + 1.41i)20-s + (1.82 + 1.27i)22-s + (0.293 − 3.34i)23-s + ⋯
L(s)  = 1  + (−1.28 − 0.598i)2-s + (0.647 + 0.772i)4-s + (−0.370 + 0.928i)5-s + (−0.836 + 0.0731i)7-s + (−0.00295 − 0.0110i)8-s + (1.03 − 0.970i)10-s + (−0.330 − 0.0582i)11-s + (−0.355 − 0.762i)13-s + (1.11 + 0.406i)14-s + (0.172 − 0.976i)16-s + (0.378 − 1.41i)17-s + (0.882 + 0.509i)19-s + (−0.957 + 0.315i)20-s + (0.389 + 0.272i)22-s + (0.0611 − 0.698i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.455 + 0.890i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.455 + 0.890i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $-0.455 + 0.890i$
Analytic conductor: \(3.23394\)
Root analytic conductor: \(1.79831\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (143, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :1/2),\ -0.455 + 0.890i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.194059 - 0.317253i\)
\(L(\frac12)\) \(\approx\) \(0.194059 - 0.317253i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (0.828 - 2.07i)T \)
good2 \( 1 + (1.81 + 0.846i)T + (1.28 + 1.53i)T^{2} \)
7 \( 1 + (2.21 - 0.193i)T + (6.89 - 1.21i)T^{2} \)
11 \( 1 + (1.09 + 0.193i)T + (10.3 + 3.76i)T^{2} \)
13 \( 1 + (1.28 + 2.74i)T + (-8.35 + 9.95i)T^{2} \)
17 \( 1 + (-1.56 + 5.82i)T + (-14.7 - 8.5i)T^{2} \)
19 \( 1 + (-3.84 - 2.22i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.293 + 3.34i)T + (-22.6 - 3.99i)T^{2} \)
29 \( 1 + (-1.74 + 0.635i)T + (22.2 - 18.6i)T^{2} \)
31 \( 1 + (-7.13 + 5.98i)T + (5.38 - 30.5i)T^{2} \)
37 \( 1 + (4.53 + 1.21i)T + (32.0 + 18.5i)T^{2} \)
41 \( 1 + (-1.07 + 2.95i)T + (-31.4 - 26.3i)T^{2} \)
43 \( 1 + (5.86 - 4.10i)T + (14.7 - 40.4i)T^{2} \)
47 \( 1 + (1.10 + 12.5i)T + (-46.2 + 8.16i)T^{2} \)
53 \( 1 + (6.34 - 6.34i)T - 53iT^{2} \)
59 \( 1 + (0.242 + 1.37i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (2.30 + 1.93i)T + (10.5 + 60.0i)T^{2} \)
67 \( 1 + (-8.07 + 3.76i)T + (43.0 - 51.3i)T^{2} \)
71 \( 1 + (-6.78 + 3.91i)T + (35.5 - 61.4i)T^{2} \)
73 \( 1 + (0.167 - 0.0447i)T + (63.2 - 36.5i)T^{2} \)
79 \( 1 + (0.697 + 1.91i)T + (-60.5 + 50.7i)T^{2} \)
83 \( 1 + (-2.27 + 4.86i)T + (-53.3 - 63.5i)T^{2} \)
89 \( 1 + (6.70 - 11.6i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-9.92 - 14.1i)T + (-33.1 + 91.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68751274391087494016491533961, −9.980557658215746819405851990353, −9.509932838728921551586281643401, −8.186506688041365794225153994511, −7.55186014950364070518492382807, −6.55181429103701985858757440501, −5.17190755729166266335293546875, −3.28456689484082263029861544490, −2.55467588890636392636564420361, −0.40172112780369220179626686640, 1.32530854238570347964182688263, 3.50474034774669692640438689237, 4.85438190904118879911919019466, 6.19935079097084525279404389789, 7.10482951975202979041533185351, 8.048404393958680023978436356708, 8.734327077600818777214967035212, 9.618900048272906244443470573464, 10.14655957980689892588588910036, 11.40910765636473911576651699639

Graph of the $Z$-function along the critical line