L(s) = 1 | + (1.08 + 0.761i)2-s + (−0.0804 − 0.221i)4-s + (−1.23 + 1.86i)5-s + (0.827 + 1.77i)7-s + (0.768 − 2.86i)8-s + (−2.76 + 1.08i)10-s + (2.76 + 3.29i)11-s + (2.90 + 4.15i)13-s + (−0.451 + 2.56i)14-s + (2.66 − 2.23i)16-s + (0.828 + 3.09i)17-s + (−0.776 + 0.448i)19-s + (0.511 + 0.122i)20-s + (0.498 + 5.69i)22-s + (−5.07 − 2.36i)23-s + ⋯ |
L(s) = 1 | + (0.769 + 0.538i)2-s + (−0.0402 − 0.110i)4-s + (−0.551 + 0.833i)5-s + (0.312 + 0.670i)7-s + (0.271 − 1.01i)8-s + (−0.873 + 0.344i)10-s + (0.833 + 0.993i)11-s + (0.806 + 1.15i)13-s + (−0.120 + 0.684i)14-s + (0.665 − 0.558i)16-s + (0.200 + 0.749i)17-s + (−0.178 + 0.102i)19-s + (0.114 + 0.0274i)20-s + (0.106 + 1.21i)22-s + (−1.05 − 0.493i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.230 - 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.230 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.49492 + 1.18242i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.49492 + 1.18242i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.23 - 1.86i)T \) |
good | 2 | \( 1 + (-1.08 - 0.761i)T + (0.684 + 1.87i)T^{2} \) |
| 7 | \( 1 + (-0.827 - 1.77i)T + (-4.49 + 5.36i)T^{2} \) |
| 11 | \( 1 + (-2.76 - 3.29i)T + (-1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (-2.90 - 4.15i)T + (-4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (-0.828 - 3.09i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (0.776 - 0.448i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (5.07 + 2.36i)T + (14.7 + 17.6i)T^{2} \) |
| 29 | \( 1 + (1.14 + 6.50i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (-2.27 + 0.828i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (-6.96 + 1.86i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (8.33 + 1.47i)T + (38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (-0.112 + 1.28i)T + (-42.3 - 7.46i)T^{2} \) |
| 47 | \( 1 + (-7.46 + 3.48i)T + (30.2 - 36.0i)T^{2} \) |
| 53 | \( 1 + (-0.947 - 0.947i)T + 53iT^{2} \) |
| 59 | \( 1 + (-3.72 - 3.12i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (7.90 + 2.87i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (7.90 - 5.53i)T + (22.9 - 62.9i)T^{2} \) |
| 71 | \( 1 + (4.92 + 2.84i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.93 - 1.32i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (0.410 - 0.0724i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-5.31 + 7.59i)T + (-28.3 - 77.9i)T^{2} \) |
| 89 | \( 1 + (-0.974 - 1.68i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-13.4 - 1.17i)T + (95.5 + 16.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.75983834453548308695787738932, −10.55243614197780059064941805013, −9.703546740002308152299454804938, −8.609371436147334420719386146906, −7.44788889680243469501864914141, −6.48171477118656917783802459047, −5.95102007141987874470223110532, −4.38555618049103630733581012975, −3.89278296415643245525752993513, −1.98690384186441251970823601292,
1.14202336889060938911935856744, 3.21835077454212939836865229133, 3.95152895229891668958609516138, 4.94756606974813566703171884210, 5.96233105020058773463823567430, 7.58130293232577182872466655000, 8.270414991201254812490172372723, 9.075407352033414944350762894822, 10.52554150629318389861684618243, 11.34205341396876495804743573000