Properties

Label 2-405-135.113-c1-0-11
Degree $2$
Conductor $405$
Sign $-0.990 + 0.135i$
Analytic cond. $3.23394$
Root an. cond. $1.79831$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.35 − 0.118i)2-s + (−0.144 − 0.0254i)4-s + (−1.16 − 1.91i)5-s + (0.495 + 0.346i)7-s + (2.82 + 0.756i)8-s + (1.34 + 2.72i)10-s + (0.461 − 1.26i)11-s + (−0.157 − 1.80i)13-s + (−0.630 − 0.529i)14-s + (−3.46 − 1.26i)16-s + (−0.596 + 0.159i)17-s + (−6.66 + 3.84i)19-s + (0.119 + 0.305i)20-s + (−0.775 + 1.66i)22-s + (−4.35 − 6.22i)23-s + ⋯
L(s)  = 1  + (−0.958 − 0.0838i)2-s + (−0.0722 − 0.0127i)4-s + (−0.519 − 0.854i)5-s + (0.187 + 0.131i)7-s + (0.998 + 0.267i)8-s + (0.426 + 0.862i)10-s + (0.139 − 0.382i)11-s + (−0.0437 − 0.499i)13-s + (−0.168 − 0.141i)14-s + (−0.865 − 0.315i)16-s + (−0.144 + 0.0387i)17-s + (−1.52 + 0.882i)19-s + (0.0266 + 0.0683i)20-s + (−0.165 + 0.354i)22-s + (−0.908 − 1.29i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 + 0.135i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.990 + 0.135i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $-0.990 + 0.135i$
Analytic conductor: \(3.23394\)
Root analytic conductor: \(1.79831\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (368, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :1/2),\ -0.990 + 0.135i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0161493 - 0.236603i\)
\(L(\frac12)\) \(\approx\) \(0.0161493 - 0.236603i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (1.16 + 1.91i)T \)
good2 \( 1 + (1.35 + 0.118i)T + (1.96 + 0.347i)T^{2} \)
7 \( 1 + (-0.495 - 0.346i)T + (2.39 + 6.57i)T^{2} \)
11 \( 1 + (-0.461 + 1.26i)T + (-8.42 - 7.07i)T^{2} \)
13 \( 1 + (0.157 + 1.80i)T + (-12.8 + 2.25i)T^{2} \)
17 \( 1 + (0.596 - 0.159i)T + (14.7 - 8.5i)T^{2} \)
19 \( 1 + (6.66 - 3.84i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (4.35 + 6.22i)T + (-7.86 + 21.6i)T^{2} \)
29 \( 1 + (4.15 - 3.48i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-0.651 + 3.69i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (1.29 + 4.82i)T + (-32.0 + 18.5i)T^{2} \)
41 \( 1 + (7.43 - 8.86i)T + (-7.11 - 40.3i)T^{2} \)
43 \( 1 + (0.466 + 1.00i)T + (-27.6 + 32.9i)T^{2} \)
47 \( 1 + (-2.99 + 4.27i)T + (-16.0 - 44.1i)T^{2} \)
53 \( 1 + (0.231 - 0.231i)T - 53iT^{2} \)
59 \( 1 + (9.76 - 3.55i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (-0.173 - 0.984i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-1.61 + 0.141i)T + (65.9 - 11.6i)T^{2} \)
71 \( 1 + (-8.27 - 4.77i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (2.09 - 7.80i)T + (-63.2 - 36.5i)T^{2} \)
79 \( 1 + (5.86 + 6.98i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (-0.973 + 11.1i)T + (-81.7 - 14.4i)T^{2} \)
89 \( 1 + (3.58 + 6.20i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-9.46 + 4.41i)T + (62.3 - 74.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.61733288721070894298525076849, −9.880660212464473228769230939409, −8.631119765948276955441694861212, −8.484751378089331810715499026088, −7.51122205463870390984983688126, −6.05412572123506190695080101960, −4.83119658846720635640322858717, −3.90369306241228806417755706070, −1.83909054762557329476055462676, −0.21115317029464260549721417595, 1.98393283198562795238463464506, 3.74718817655746625040364406470, 4.69183466811700825705306813106, 6.40836391799649027485686206786, 7.25759403153854456211493531646, 8.016903308943595655190303895451, 8.957880908811204461956184551846, 9.828238685019397916370533886119, 10.68309961542159295837483328148, 11.35226542048724963533266429576

Graph of the $Z$-function along the critical line