Properties

Label 2-405-1.1-c3-0-37
Degree $2$
Conductor $405$
Sign $-1$
Analytic cond. $23.8957$
Root an. cond. $4.88833$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.149·2-s − 7.97·4-s − 5·5-s + 20.1·7-s − 2.38·8-s − 0.745·10-s + 9.89·11-s − 11.8·13-s + 3.00·14-s + 63.4·16-s + 6.09·17-s − 62.6·19-s + 39.8·20-s + 1.47·22-s − 12.0·23-s + 25·25-s − 1.76·26-s − 160.·28-s − 140.·29-s + 178.·31-s + 28.5·32-s + 0.908·34-s − 100.·35-s − 216.·37-s − 9.34·38-s + 11.9·40-s − 411.·41-s + ⋯
L(s)  = 1  + 0.0527·2-s − 0.997·4-s − 0.447·5-s + 1.08·7-s − 0.105·8-s − 0.0235·10-s + 0.271·11-s − 0.252·13-s + 0.0573·14-s + 0.991·16-s + 0.0869·17-s − 0.756·19-s + 0.445·20-s + 0.0143·22-s − 0.109·23-s + 0.200·25-s − 0.0133·26-s − 1.08·28-s − 0.900·29-s + 1.03·31-s + 0.157·32-s + 0.00458·34-s − 0.486·35-s − 0.960·37-s − 0.0398·38-s + 0.0470·40-s − 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(23.8957\)
Root analytic conductor: \(4.88833\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 405,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 5T \)
good2 \( 1 - 0.149T + 8T^{2} \)
7 \( 1 - 20.1T + 343T^{2} \)
11 \( 1 - 9.89T + 1.33e3T^{2} \)
13 \( 1 + 11.8T + 2.19e3T^{2} \)
17 \( 1 - 6.09T + 4.91e3T^{2} \)
19 \( 1 + 62.6T + 6.85e3T^{2} \)
23 \( 1 + 12.0T + 1.21e4T^{2} \)
29 \( 1 + 140.T + 2.43e4T^{2} \)
31 \( 1 - 178.T + 2.97e4T^{2} \)
37 \( 1 + 216.T + 5.06e4T^{2} \)
41 \( 1 + 411.T + 6.89e4T^{2} \)
43 \( 1 + 48.9T + 7.95e4T^{2} \)
47 \( 1 + 615.T + 1.03e5T^{2} \)
53 \( 1 + 705.T + 1.48e5T^{2} \)
59 \( 1 + 494.T + 2.05e5T^{2} \)
61 \( 1 - 666.T + 2.26e5T^{2} \)
67 \( 1 - 277.T + 3.00e5T^{2} \)
71 \( 1 - 239.T + 3.57e5T^{2} \)
73 \( 1 + 919.T + 3.89e5T^{2} \)
79 \( 1 - 516.T + 4.93e5T^{2} \)
83 \( 1 - 652.T + 5.71e5T^{2} \)
89 \( 1 - 543.T + 7.04e5T^{2} \)
97 \( 1 - 1.13e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.36227916401662728901477332023, −9.396388655723350605825103187537, −8.380053612862166466256554197284, −7.934400618024277402654014412932, −6.58909704839049782024031232473, −5.19108258179530469870889758370, −4.54369634725585768599320562973, −3.45305300768411989762820834204, −1.61137702995729472119416865259, 0, 1.61137702995729472119416865259, 3.45305300768411989762820834204, 4.54369634725585768599320562973, 5.19108258179530469870889758370, 6.58909704839049782024031232473, 7.934400618024277402654014412932, 8.380053612862166466256554197284, 9.396388655723350605825103187537, 10.36227916401662728901477332023

Graph of the $Z$-function along the critical line