Properties

Label 2-4046-1.1-c1-0-34
Degree $2$
Conductor $4046$
Sign $1$
Analytic cond. $32.3074$
Root an. cond. $5.68396$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 4·5-s + 6-s + 7-s + 8-s − 2·9-s − 4·10-s + 12-s − 2·13-s + 14-s − 4·15-s + 16-s − 2·18-s + 3·19-s − 4·20-s + 21-s − 4·23-s + 24-s + 11·25-s − 2·26-s − 5·27-s + 28-s − 29-s − 4·30-s + 9·31-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 1.78·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s − 2/3·9-s − 1.26·10-s + 0.288·12-s − 0.554·13-s + 0.267·14-s − 1.03·15-s + 1/4·16-s − 0.471·18-s + 0.688·19-s − 0.894·20-s + 0.218·21-s − 0.834·23-s + 0.204·24-s + 11/5·25-s − 0.392·26-s − 0.962·27-s + 0.188·28-s − 0.185·29-s − 0.730·30-s + 1.61·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4046 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4046 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4046\)    =    \(2 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(32.3074\)
Root analytic conductor: \(5.68396\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4046,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.362771144\)
\(L(\frac12)\) \(\approx\) \(2.362771144\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.267924804472415122122038555599, −7.63768846359051885320377750328, −7.28436575889116455955622799622, −6.17114861868817108814561157520, −5.30923996702738821790360609592, −4.38211018833650985019627393787, −3.96288670793729893993914350994, −3.04296579586378534444595425856, −2.42282315290469378664282284912, −0.75204211022204226740740650201, 0.75204211022204226740740650201, 2.42282315290469378664282284912, 3.04296579586378534444595425856, 3.96288670793729893993914350994, 4.38211018833650985019627393787, 5.30923996702738821790360609592, 6.17114861868817108814561157520, 7.28436575889116455955622799622, 7.63768846359051885320377750328, 8.267924804472415122122038555599

Graph of the $Z$-function along the critical line