Properties

Label 2-4046-1.1-c1-0-131
Degree $2$
Conductor $4046$
Sign $-1$
Analytic cond. $32.3074$
Root an. cond. $5.68396$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 7-s + 8-s − 2·9-s − 4·11-s + 12-s − 2·13-s + 14-s + 16-s − 2·18-s − 3·19-s + 21-s − 4·22-s − 4·23-s + 24-s − 5·25-s − 2·26-s − 5·27-s + 28-s + 5·29-s − 3·31-s + 32-s − 4·33-s − 2·36-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s + 0.353·8-s − 2/3·9-s − 1.20·11-s + 0.288·12-s − 0.554·13-s + 0.267·14-s + 1/4·16-s − 0.471·18-s − 0.688·19-s + 0.218·21-s − 0.852·22-s − 0.834·23-s + 0.204·24-s − 25-s − 0.392·26-s − 0.962·27-s + 0.188·28-s + 0.928·29-s − 0.538·31-s + 0.176·32-s − 0.696·33-s − 1/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4046 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4046 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4046\)    =    \(2 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(32.3074\)
Root analytic conductor: \(5.68396\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4046,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.975844699885108911314141777036, −7.54300769566632741158691438232, −6.46591457599515316414493611773, −5.73334629502015012143397793839, −5.05440366133538907059260554135, −4.28092918744138945331729410832, −3.34190854744190344693587594869, −2.54629581873532550022155812193, −1.90853402838406757317701335649, 0, 1.90853402838406757317701335649, 2.54629581873532550022155812193, 3.34190854744190344693587594869, 4.28092918744138945331729410832, 5.05440366133538907059260554135, 5.73334629502015012143397793839, 6.46591457599515316414493611773, 7.54300769566632741158691438232, 7.975844699885108911314141777036

Graph of the $Z$-function along the critical line