| L(s) = 1 | + 2-s + 3-s + 4-s + 6-s + 7-s + 8-s − 2·9-s − 4·11-s + 12-s − 2·13-s + 14-s + 16-s − 2·18-s − 3·19-s + 21-s − 4·22-s − 4·23-s + 24-s − 5·25-s − 2·26-s − 5·27-s + 28-s + 5·29-s − 3·31-s + 32-s − 4·33-s − 2·36-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s + 0.353·8-s − 2/3·9-s − 1.20·11-s + 0.288·12-s − 0.554·13-s + 0.267·14-s + 1/4·16-s − 0.471·18-s − 0.688·19-s + 0.218·21-s − 0.852·22-s − 0.834·23-s + 0.204·24-s − 25-s − 0.392·26-s − 0.962·27-s + 0.188·28-s + 0.928·29-s − 0.538·31-s + 0.176·32-s − 0.696·33-s − 1/3·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4046 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4046 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 - T \) | |
| 7 | \( 1 - T \) | |
| 17 | \( 1 \) | |
| good | 3 | \( 1 - T + p T^{2} \) | 1.3.ab |
| 5 | \( 1 + p T^{2} \) | 1.5.a |
| 11 | \( 1 + 4 T + p T^{2} \) | 1.11.e |
| 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c |
| 19 | \( 1 + 3 T + p T^{2} \) | 1.19.d |
| 23 | \( 1 + 4 T + p T^{2} \) | 1.23.e |
| 29 | \( 1 - 5 T + p T^{2} \) | 1.29.af |
| 31 | \( 1 + 3 T + p T^{2} \) | 1.31.d |
| 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c |
| 41 | \( 1 - 8 T + p T^{2} \) | 1.41.ai |
| 43 | \( 1 + 6 T + p T^{2} \) | 1.43.g |
| 47 | \( 1 + 9 T + p T^{2} \) | 1.47.j |
| 53 | \( 1 - 5 T + p T^{2} \) | 1.53.af |
| 59 | \( 1 + 5 T + p T^{2} \) | 1.59.f |
| 61 | \( 1 + 12 T + p T^{2} \) | 1.61.m |
| 67 | \( 1 - 4 T + p T^{2} \) | 1.67.ae |
| 71 | \( 1 + 6 T + p T^{2} \) | 1.71.g |
| 73 | \( 1 - 14 T + p T^{2} \) | 1.73.ao |
| 79 | \( 1 - 6 T + p T^{2} \) | 1.79.ag |
| 83 | \( 1 + 5 T + p T^{2} \) | 1.83.f |
| 89 | \( 1 + 12 T + p T^{2} \) | 1.89.m |
| 97 | \( 1 - 6 T + p T^{2} \) | 1.97.ag |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.975844699885108911314141777036, −7.54300769566632741158691438232, −6.46591457599515316414493611773, −5.73334629502015012143397793839, −5.05440366133538907059260554135, −4.28092918744138945331729410832, −3.34190854744190344693587594869, −2.54629581873532550022155812193, −1.90853402838406757317701335649, 0,
1.90853402838406757317701335649, 2.54629581873532550022155812193, 3.34190854744190344693587594869, 4.28092918744138945331729410832, 5.05440366133538907059260554135, 5.73334629502015012143397793839, 6.46591457599515316414493611773, 7.54300769566632741158691438232, 7.975844699885108911314141777036