L(s) = 1 | + 2·5-s + 7-s + 4·11-s − 2·13-s + 6·17-s + 8·19-s − 25-s + 6·29-s − 8·31-s + 2·35-s + 2·37-s − 2·41-s − 4·43-s − 8·47-s + 49-s + 6·53-s + 8·55-s + 6·61-s − 4·65-s − 4·67-s − 8·71-s + 10·73-s + 4·77-s − 16·79-s − 8·83-s + 12·85-s + 6·89-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 0.377·7-s + 1.20·11-s − 0.554·13-s + 1.45·17-s + 1.83·19-s − 1/5·25-s + 1.11·29-s − 1.43·31-s + 0.338·35-s + 0.328·37-s − 0.312·41-s − 0.609·43-s − 1.16·47-s + 1/7·49-s + 0.824·53-s + 1.07·55-s + 0.768·61-s − 0.496·65-s − 0.488·67-s − 0.949·71-s + 1.17·73-s + 0.455·77-s − 1.80·79-s − 0.878·83-s + 1.30·85-s + 0.635·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.856262833\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.856262833\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 5 | \( 1 - 2 T + p T^{2} \) |
| 11 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 - 8 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 6 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 + 16 T + p T^{2} \) |
| 83 | \( 1 + 8 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.509354664621903192772158046209, −7.58750440596713449607840635902, −7.07204727903132066232126574118, −6.11340833663381996666748371567, −5.48790807221177914788155934026, −4.86758911716003878330800803137, −3.73233091133641602778161609628, −2.99737772195369908741226640050, −1.79239147115953487472752121748, −1.07526755386223660246135627512,
1.07526755386223660246135627512, 1.79239147115953487472752121748, 2.99737772195369908741226640050, 3.73233091133641602778161609628, 4.86758911716003878330800803137, 5.48790807221177914788155934026, 6.11340833663381996666748371567, 7.07204727903132066232126574118, 7.58750440596713449607840635902, 8.509354664621903192772158046209