Properties

Label 2-40310-1.1-c1-0-5
Degree $2$
Conductor $40310$
Sign $1$
Analytic cond. $321.876$
Root an. cond. $17.9409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 4·7-s + 8-s − 3·9-s − 10-s + 6·13-s + 4·14-s + 16-s − 6·17-s − 3·18-s + 2·19-s − 20-s − 8·23-s + 25-s + 6·26-s + 4·28-s + 29-s + 4·31-s + 32-s − 6·34-s − 4·35-s − 3·36-s − 12·37-s + 2·38-s − 40-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 1.51·7-s + 0.353·8-s − 9-s − 0.316·10-s + 1.66·13-s + 1.06·14-s + 1/4·16-s − 1.45·17-s − 0.707·18-s + 0.458·19-s − 0.223·20-s − 1.66·23-s + 1/5·25-s + 1.17·26-s + 0.755·28-s + 0.185·29-s + 0.718·31-s + 0.176·32-s − 1.02·34-s − 0.676·35-s − 1/2·36-s − 1.97·37-s + 0.324·38-s − 0.158·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40310\)    =    \(2 \cdot 5 \cdot 29 \cdot 139\)
Sign: $1$
Analytic conductor: \(321.876\)
Root analytic conductor: \(17.9409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.982615417\)
\(L(\frac12)\) \(\approx\) \(3.982615417\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
29 \( 1 - T \)
139 \( 1 - T \)
good3 \( 1 + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 12 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.60448187531757, −14.06655246656280, −13.92986367918383, −13.47660777496398, −12.64719708667170, −11.99724666500373, −11.70293031984370, −11.18066603548434, −10.78205434609587, −10.46052092306947, −9.291742887691760, −8.690302785469336, −8.412507008659434, −7.829289566285313, −7.338074420966369, −6.304507046206853, −6.170210701233944, −5.356090819281905, −4.875408631188005, −4.081214674221239, −3.871738684321786, −2.943014246910961, −2.187431362079829, −1.608667702917205, −0.6447513564971381, 0.6447513564971381, 1.608667702917205, 2.187431362079829, 2.943014246910961, 3.871738684321786, 4.081214674221239, 4.875408631188005, 5.356090819281905, 6.170210701233944, 6.304507046206853, 7.338074420966369, 7.829289566285313, 8.412507008659434, 8.690302785469336, 9.291742887691760, 10.46052092306947, 10.78205434609587, 11.18066603548434, 11.70293031984370, 11.99724666500373, 12.64719708667170, 13.47660777496398, 13.92986367918383, 14.06655246656280, 14.60448187531757

Graph of the $Z$-function along the critical line