Properties

Label 2-40310-1.1-c1-0-4
Degree $2$
Conductor $40310$
Sign $1$
Analytic cond. $321.876$
Root an. cond. $17.9409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s − 3·7-s + 8-s − 2·9-s − 10-s + 4·11-s − 12-s − 3·13-s − 3·14-s + 15-s + 16-s − 17-s − 2·18-s + 5·19-s − 20-s + 3·21-s + 4·22-s + 8·23-s − 24-s + 25-s − 3·26-s + 5·27-s − 3·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 1.13·7-s + 0.353·8-s − 2/3·9-s − 0.316·10-s + 1.20·11-s − 0.288·12-s − 0.832·13-s − 0.801·14-s + 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.471·18-s + 1.14·19-s − 0.223·20-s + 0.654·21-s + 0.852·22-s + 1.66·23-s − 0.204·24-s + 1/5·25-s − 0.588·26-s + 0.962·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40310\)    =    \(2 \cdot 5 \cdot 29 \cdot 139\)
Sign: $1$
Analytic conductor: \(321.876\)
Root analytic conductor: \(17.9409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.075898030\)
\(L(\frac12)\) \(\approx\) \(2.075898030\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
29 \( 1 + T \)
139 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 3 T + p T^{2} \)
17 \( 1 + T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 9 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 + 11 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 - 13 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 - 11 T + p T^{2} \)
89 \( 1 - 4 T + p T^{2} \)
97 \( 1 - T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.87399930440417, −14.07582899575711, −13.87354483112647, −13.20765239732595, −12.48693240162143, −12.19444746511934, −11.82352635463387, −11.25822540835418, −10.75576259882908, −10.15497348593496, −9.367767463524065, −9.131700357396184, −8.430877422089723, −7.458298255694791, −7.123558185466566, −6.549478659911385, −6.097822966633072, −5.450034404657987, −4.861807126720060, −4.325527865758614, −3.420386762152525, −3.137185123775362, −2.473745815296430, −1.271652845578786, −0.5206171715846677, 0.5206171715846677, 1.271652845578786, 2.473745815296430, 3.137185123775362, 3.420386762152525, 4.325527865758614, 4.861807126720060, 5.450034404657987, 6.097822966633072, 6.549478659911385, 7.123558185466566, 7.458298255694791, 8.430877422089723, 9.131700357396184, 9.367767463524065, 10.15497348593496, 10.75576259882908, 11.25822540835418, 11.82352635463387, 12.19444746511934, 12.48693240162143, 13.20765239732595, 13.87354483112647, 14.07582899575711, 14.87399930440417

Graph of the $Z$-function along the critical line