Properties

Label 2-40310-1.1-c1-0-3
Degree $2$
Conductor $40310$
Sign $1$
Analytic cond. $321.876$
Root an. cond. $17.9409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s − 3·7-s + 8-s − 2·9-s − 10-s + 2·11-s − 12-s + 3·13-s − 3·14-s + 15-s + 16-s − 3·17-s − 2·18-s + 3·19-s − 20-s + 3·21-s + 2·22-s − 4·23-s − 24-s + 25-s + 3·26-s + 5·27-s − 3·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 1.13·7-s + 0.353·8-s − 2/3·9-s − 0.316·10-s + 0.603·11-s − 0.288·12-s + 0.832·13-s − 0.801·14-s + 0.258·15-s + 1/4·16-s − 0.727·17-s − 0.471·18-s + 0.688·19-s − 0.223·20-s + 0.654·21-s + 0.426·22-s − 0.834·23-s − 0.204·24-s + 1/5·25-s + 0.588·26-s + 0.962·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40310\)    =    \(2 \cdot 5 \cdot 29 \cdot 139\)
Sign: $1$
Analytic conductor: \(321.876\)
Root analytic conductor: \(17.9409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.994816281\)
\(L(\frac12)\) \(\approx\) \(1.994816281\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
29 \( 1 + T \)
139 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 3 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 - 9 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 3 T + p T^{2} \)
67 \( 1 - 9 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.59761678505409, −14.28585112333023, −13.65411975029741, −13.28527487344348, −12.50131593243492, −12.35079517599279, −11.57963615631056, −11.28256208712500, −10.85605940085805, −10.09455082859168, −9.533786433484642, −8.991863358851340, −8.315355482114203, −7.748413283706885, −6.984594114944669, −6.438935900538640, −6.041809313883596, −5.697820828730088, −4.770993771465571, −4.167793415794051, −3.716961124315996, −2.920694884931475, −2.529000142094806, −1.281202001384403, −0.5067334838682477, 0.5067334838682477, 1.281202001384403, 2.529000142094806, 2.920694884931475, 3.716961124315996, 4.167793415794051, 4.770993771465571, 5.697820828730088, 6.041809313883596, 6.438935900538640, 6.984594114944669, 7.748413283706885, 8.315355482114203, 8.991863358851340, 9.533786433484642, 10.09455082859168, 10.85605940085805, 11.28256208712500, 11.57963615631056, 12.35079517599279, 12.50131593243492, 13.28527487344348, 13.65411975029741, 14.28585112333023, 14.59761678505409

Graph of the $Z$-function along the critical line