Properties

Label 2-40310-1.1-c1-0-28
Degree $2$
Conductor $40310$
Sign $-1$
Analytic cond. $321.876$
Root an. cond. $17.9409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s + 5-s + 2·6-s + 3·7-s + 8-s + 9-s + 10-s − 5·11-s + 2·12-s + 3·14-s + 2·15-s + 16-s + 2·17-s + 18-s + 2·19-s + 20-s + 6·21-s − 5·22-s − 4·23-s + 2·24-s + 25-s − 4·27-s + 3·28-s − 29-s + 2·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.447·5-s + 0.816·6-s + 1.13·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.50·11-s + 0.577·12-s + 0.801·14-s + 0.516·15-s + 1/4·16-s + 0.485·17-s + 0.235·18-s + 0.458·19-s + 0.223·20-s + 1.30·21-s − 1.06·22-s − 0.834·23-s + 0.408·24-s + 1/5·25-s − 0.769·27-s + 0.566·28-s − 0.185·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40310\)    =    \(2 \cdot 5 \cdot 29 \cdot 139\)
Sign: $-1$
Analytic conductor: \(321.876\)
Root analytic conductor: \(17.9409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
29 \( 1 + T \)
139 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 + 11 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 13 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 9 T + p T^{2} \)
73 \( 1 - T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.83043446527026, −14.37415977203348, −14.11685764906819, −13.61835738169152, −13.07506702565298, −12.67334424041476, −12.01377850058965, −11.30615087326428, −10.99146331903150, −10.21993588445327, −9.875898412135587, −9.156352823090047, −8.377706097536387, −8.191203371438000, −7.539548298274017, −7.212169785607195, −6.223144138472771, −5.460178067973073, −5.265091092261242, −4.585645256906540, −3.775820777936000, −3.168360595585164, −2.659157308045440, −1.868040532512871, −1.587311440203644, 0, 1.587311440203644, 1.868040532512871, 2.659157308045440, 3.168360595585164, 3.775820777936000, 4.585645256906540, 5.265091092261242, 5.460178067973073, 6.223144138472771, 7.212169785607195, 7.539548298274017, 8.191203371438000, 8.377706097536387, 9.156352823090047, 9.875898412135587, 10.21993588445327, 10.99146331903150, 11.30615087326428, 12.01377850058965, 12.67334424041476, 13.07506702565298, 13.61835738169152, 14.11685764906819, 14.37415977203348, 14.83043446527026

Graph of the $Z$-function along the critical line