Properties

Label 2-40310-1.1-c1-0-23
Degree $2$
Conductor $40310$
Sign $-1$
Analytic cond. $321.876$
Root an. cond. $17.9409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s + 3·7-s + 8-s − 2·9-s + 10-s + 2·11-s − 12-s − 13-s + 3·14-s − 15-s + 16-s + 3·17-s − 2·18-s + 5·19-s + 20-s − 3·21-s + 2·22-s − 6·23-s − 24-s + 25-s − 26-s + 5·27-s + 3·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 1.13·7-s + 0.353·8-s − 2/3·9-s + 0.316·10-s + 0.603·11-s − 0.288·12-s − 0.277·13-s + 0.801·14-s − 0.258·15-s + 1/4·16-s + 0.727·17-s − 0.471·18-s + 1.14·19-s + 0.223·20-s − 0.654·21-s + 0.426·22-s − 1.25·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.962·27-s + 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40310\)    =    \(2 \cdot 5 \cdot 29 \cdot 139\)
Sign: $-1$
Analytic conductor: \(321.876\)
Root analytic conductor: \(17.9409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
29 \( 1 + T \)
139 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + 11 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 13 T + p T^{2} \)
67 \( 1 - 13 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.91762737268731, −14.32429316539769, −14.08107826721492, −13.68921687186057, −12.99854212220963, −12.09787427707047, −11.97215085724233, −11.60356529313773, −11.01557888281354, −10.42636679205169, −9.874430975626352, −9.342166691011757, −8.463735324461689, −8.075612325702274, −7.507856691497605, −6.709746586110874, −6.264488175219430, −5.636052880113215, −5.060519046379097, −4.905043417241642, −3.934010476836744, −3.307398608933672, −2.619021197706556, −1.659888606158350, −1.313471717975326, 0, 1.313471717975326, 1.659888606158350, 2.619021197706556, 3.307398608933672, 3.934010476836744, 4.905043417241642, 5.060519046379097, 5.636052880113215, 6.264488175219430, 6.709746586110874, 7.507856691497605, 8.075612325702274, 8.463735324461689, 9.342166691011757, 9.874430975626352, 10.42636679205169, 11.01557888281354, 11.60356529313773, 11.97215085724233, 12.09787427707047, 12.99854212220963, 13.68921687186057, 14.08107826721492, 14.32429316539769, 14.91762737268731

Graph of the $Z$-function along the critical line