Properties

Label 2-40310-1.1-c1-0-21
Degree $2$
Conductor $40310$
Sign $1$
Analytic cond. $321.876$
Root an. cond. $17.9409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 3·7-s − 8-s − 2·9-s − 10-s − 6·11-s − 12-s + 3·13-s + 3·14-s − 15-s + 16-s + 17-s + 2·18-s − 7·19-s + 20-s + 3·21-s + 6·22-s + 4·23-s + 24-s + 25-s − 3·26-s + 5·27-s − 3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.13·7-s − 0.353·8-s − 2/3·9-s − 0.316·10-s − 1.80·11-s − 0.288·12-s + 0.832·13-s + 0.801·14-s − 0.258·15-s + 1/4·16-s + 0.242·17-s + 0.471·18-s − 1.60·19-s + 0.223·20-s + 0.654·21-s + 1.27·22-s + 0.834·23-s + 0.204·24-s + 1/5·25-s − 0.588·26-s + 0.962·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40310\)    =    \(2 \cdot 5 \cdot 29 \cdot 139\)
Sign: $1$
Analytic conductor: \(321.876\)
Root analytic conductor: \(17.9409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 40310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 - T \)
29 \( 1 - T \)
139 \( 1 - T \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 - T + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + 4 T + p T^{2} \)
43 \( 1 - 9 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 + 13 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 7 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 + 9 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.39986482468828, −15.05939755694288, −14.18038496008135, −13.67627008865563, −13.01190323909327, −12.66997733889101, −12.38447636853684, −11.37143797984180, −10.82515833397532, −10.69638442946828, −10.18290990753825, −9.462074792760568, −8.935044983808752, −8.509498344518027, −7.867372659715754, −7.218424824574339, −6.596878715119223, −6.024941491804726, −5.716792304454140, −5.100811958050608, −4.255173244254103, −3.261968387186028, −2.841652047359148, −2.218052167572650, −1.238328488165474, 0, 0, 1.238328488165474, 2.218052167572650, 2.841652047359148, 3.261968387186028, 4.255173244254103, 5.100811958050608, 5.716792304454140, 6.024941491804726, 6.596878715119223, 7.218424824574339, 7.867372659715754, 8.509498344518027, 8.935044983808752, 9.462074792760568, 10.18290990753825, 10.69638442946828, 10.82515833397532, 11.37143797984180, 12.38447636853684, 12.66997733889101, 13.01190323909327, 13.67627008865563, 14.18038496008135, 15.05939755694288, 15.39986482468828

Graph of the $Z$-function along the critical line