Properties

Label 2-40310-1.1-c1-0-18
Degree $2$
Conductor $40310$
Sign $-1$
Analytic cond. $321.876$
Root an. cond. $17.9409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s + 5-s − 2·6-s + 7-s + 8-s + 9-s + 10-s + 2·11-s − 2·12-s + 3·13-s + 14-s − 2·15-s + 16-s − 6·17-s + 18-s + 5·19-s + 20-s − 2·21-s + 2·22-s + 2·23-s − 2·24-s + 25-s + 3·26-s + 4·27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.447·5-s − 0.816·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.603·11-s − 0.577·12-s + 0.832·13-s + 0.267·14-s − 0.516·15-s + 1/4·16-s − 1.45·17-s + 0.235·18-s + 1.14·19-s + 0.223·20-s − 0.436·21-s + 0.426·22-s + 0.417·23-s − 0.408·24-s + 1/5·25-s + 0.588·26-s + 0.769·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40310\)    =    \(2 \cdot 5 \cdot 29 \cdot 139\)
Sign: $-1$
Analytic conductor: \(321.876\)
Root analytic conductor: \(17.9409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
29 \( 1 + T \)
139 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 16 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 12 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.92421552463152, −14.49180997430685, −13.95045836356837, −13.36790796762331, −13.07823981227104, −12.33590428304313, −11.91311525022300, −11.27497160819582, −11.02992571748501, −10.75182804925273, −9.735457589680533, −9.405331533125579, −8.571629169961494, −8.157035561565178, −7.141266548368313, −6.625472893964740, −6.472649848808096, −5.536184657909442, −5.276799810025468, −4.802241606672229, −3.920386039266316, −3.475208548144288, −2.529993680048421, −1.702829270088732, −1.127034741594633, 0, 1.127034741594633, 1.702829270088732, 2.529993680048421, 3.475208548144288, 3.920386039266316, 4.802241606672229, 5.276799810025468, 5.536184657909442, 6.472649848808096, 6.625472893964740, 7.141266548368313, 8.157035561565178, 8.571629169961494, 9.405331533125579, 9.735457589680533, 10.75182804925273, 11.02992571748501, 11.27497160819582, 11.91311525022300, 12.33590428304313, 13.07823981227104, 13.36790796762331, 13.95045836356837, 14.49180997430685, 14.92421552463152

Graph of the $Z$-function along the critical line