Properties

Label 2-40310-1.1-c1-0-16
Degree $2$
Conductor $40310$
Sign $1$
Analytic cond. $321.876$
Root an. cond. $17.9409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3·3-s + 4-s − 5-s + 3·6-s + 7-s + 8-s + 6·9-s − 10-s + 3·12-s + 5·13-s + 14-s − 3·15-s + 16-s + 7·17-s + 6·18-s − 7·19-s − 20-s + 3·21-s + 8·23-s + 3·24-s + 25-s + 5·26-s + 9·27-s + 28-s − 29-s − 3·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.73·3-s + 1/2·4-s − 0.447·5-s + 1.22·6-s + 0.377·7-s + 0.353·8-s + 2·9-s − 0.316·10-s + 0.866·12-s + 1.38·13-s + 0.267·14-s − 0.774·15-s + 1/4·16-s + 1.69·17-s + 1.41·18-s − 1.60·19-s − 0.223·20-s + 0.654·21-s + 1.66·23-s + 0.612·24-s + 1/5·25-s + 0.980·26-s + 1.73·27-s + 0.188·28-s − 0.185·29-s − 0.547·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40310\)    =    \(2 \cdot 5 \cdot 29 \cdot 139\)
Sign: $1$
Analytic conductor: \(321.876\)
Root analytic conductor: \(17.9409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(9.784689456\)
\(L(\frac12)\) \(\approx\) \(9.784689456\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
29 \( 1 + T \)
139 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 4 T + p T^{2} \)
43 \( 1 - 5 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 - T + p T^{2} \)
67 \( 1 - T + p T^{2} \)
71 \( 1 + 9 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 7 T + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 - T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.76061005216174, −14.39850128752700, −13.82295986042779, −13.19649174964842, −12.84765534809062, −12.59060380765443, −11.57290076479898, −11.25213642127423, −10.42378015918388, −10.25028783641153, −9.108929099677116, −8.943844819073736, −8.350186154371873, −7.888773863326684, −7.231791285138916, −6.957827233572607, −5.934239294791990, −5.474669519138382, −4.559210949429107, −3.985632488444186, −3.590265128338403, −3.066381139497002, −2.380130202993107, −1.622333302909807, −0.9866353615282121, 0.9866353615282121, 1.622333302909807, 2.380130202993107, 3.066381139497002, 3.590265128338403, 3.985632488444186, 4.559210949429107, 5.474669519138382, 5.934239294791990, 6.957827233572607, 7.231791285138916, 7.888773863326684, 8.350186154371873, 8.943844819073736, 9.108929099677116, 10.25028783641153, 10.42378015918388, 11.25213642127423, 11.57290076479898, 12.59060380765443, 12.84765534809062, 13.19649174964842, 13.82295986042779, 14.39850128752700, 14.76061005216174

Graph of the $Z$-function along the critical line