Properties

Label 2-40310-1.1-c1-0-12
Degree $2$
Conductor $40310$
Sign $-1$
Analytic cond. $321.876$
Root an. cond. $17.9409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s − 7-s + 8-s − 2·9-s + 10-s − 2·11-s − 12-s − 5·13-s − 14-s − 15-s + 16-s − 5·17-s − 2·18-s + 5·19-s + 20-s + 21-s − 2·22-s + 6·23-s − 24-s + 25-s − 5·26-s + 5·27-s − 28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s − 2/3·9-s + 0.316·10-s − 0.603·11-s − 0.288·12-s − 1.38·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s − 1.21·17-s − 0.471·18-s + 1.14·19-s + 0.223·20-s + 0.218·21-s − 0.426·22-s + 1.25·23-s − 0.204·24-s + 1/5·25-s − 0.980·26-s + 0.962·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40310\)    =    \(2 \cdot 5 \cdot 29 \cdot 139\)
Sign: $-1$
Analytic conductor: \(321.876\)
Root analytic conductor: \(17.9409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
29 \( 1 + T \)
139 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 - 5 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 - T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 - 14 T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.01421276057299, −14.46890603123332, −13.94123150429132, −13.47231380753155, −12.96097406971704, −12.44658718232864, −12.01020560015985, −11.43463149464506, −10.87016143340534, −10.54967163983719, −9.826199407118914, −9.186500503026958, −8.886101821270891, −7.846301830077230, −7.387060732995906, −6.798621118898248, −6.327283208286218, −5.488125252280535, −5.314788638796500, −4.750334642878548, −4.028729744827346, −3.025402073102836, −2.710058863474472, −2.067571243985983, −0.9123344976497703, 0, 0.9123344976497703, 2.067571243985983, 2.710058863474472, 3.025402073102836, 4.028729744827346, 4.750334642878548, 5.314788638796500, 5.488125252280535, 6.327283208286218, 6.798621118898248, 7.387060732995906, 7.846301830077230, 8.886101821270891, 9.186500503026958, 9.826199407118914, 10.54967163983719, 10.87016143340534, 11.43463149464506, 12.01020560015985, 12.44658718232864, 12.96097406971704, 13.47231380753155, 13.94123150429132, 14.46890603123332, 15.01421276057299

Graph of the $Z$-function along the critical line