Properties

Label 2-40310-1.1-c1-0-1
Degree $2$
Conductor $40310$
Sign $1$
Analytic cond. $321.876$
Root an. cond. $17.9409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s − 5-s + 2·6-s − 7-s − 8-s + 9-s + 10-s + 6·11-s − 2·12-s − 13-s + 14-s + 2·15-s + 16-s − 18-s − 7·19-s − 20-s + 2·21-s − 6·22-s + 2·24-s + 25-s + 26-s + 4·27-s − 28-s − 29-s − 2·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.447·5-s + 0.816·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.80·11-s − 0.577·12-s − 0.277·13-s + 0.267·14-s + 0.516·15-s + 1/4·16-s − 0.235·18-s − 1.60·19-s − 0.223·20-s + 0.436·21-s − 1.27·22-s + 0.408·24-s + 1/5·25-s + 0.196·26-s + 0.769·27-s − 0.188·28-s − 0.185·29-s − 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40310\)    =    \(2 \cdot 5 \cdot 29 \cdot 139\)
Sign: $1$
Analytic conductor: \(321.876\)
Root analytic conductor: \(17.9409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4526924316\)
\(L(\frac12)\) \(\approx\) \(0.4526924316\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 + T \)
29 \( 1 + T \)
139 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 7 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.87593926634181, −14.31014507480758, −13.94820249587010, −12.76355615735655, −12.52599024110846, −12.19004596251393, −11.40445149075457, −11.20086472315106, −10.69345525813669, −10.15386479099326, −9.369663780159265, −8.972947093940266, −8.622264254731103, −7.598787359060784, −7.297657893982511, −6.510903552430660, −6.143854036023519, −5.864920589178586, −4.745269160642162, −4.320841136699365, −3.658026012004181, −2.847423985305483, −1.908470332895752, −1.170442836353396, −0.3306156484937494, 0.3306156484937494, 1.170442836353396, 1.908470332895752, 2.847423985305483, 3.658026012004181, 4.320841136699365, 4.745269160642162, 5.864920589178586, 6.143854036023519, 6.510903552430660, 7.297657893982511, 7.598787359060784, 8.622264254731103, 8.972947093940266, 9.369663780159265, 10.15386479099326, 10.69345525813669, 11.20086472315106, 11.40445149075457, 12.19004596251393, 12.52599024110846, 12.76355615735655, 13.94820249587010, 14.31014507480758, 14.87593926634181

Graph of the $Z$-function along the critical line