Properties

Label 2-403-1.1-c1-0-9
Degree $2$
Conductor $403$
Sign $-1$
Analytic cond. $3.21797$
Root an. cond. $1.79387$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.917·2-s − 2.85·3-s − 1.15·4-s − 0.732·5-s + 2.61·6-s + 4.57·7-s + 2.89·8-s + 5.13·9-s + 0.671·10-s − 4.12·11-s + 3.30·12-s + 13-s − 4.19·14-s + 2.08·15-s − 0.339·16-s − 3.43·17-s − 4.71·18-s + 0.712·19-s + 0.848·20-s − 13.0·21-s + 3.78·22-s + 1.36·23-s − 8.26·24-s − 4.46·25-s − 0.917·26-s − 6.09·27-s − 5.30·28-s + ⋯
L(s)  = 1  − 0.648·2-s − 1.64·3-s − 0.579·4-s − 0.327·5-s + 1.06·6-s + 1.73·7-s + 1.02·8-s + 1.71·9-s + 0.212·10-s − 1.24·11-s + 0.954·12-s + 0.277·13-s − 1.12·14-s + 0.539·15-s − 0.0847·16-s − 0.832·17-s − 1.11·18-s + 0.163·19-s + 0.189·20-s − 2.84·21-s + 0.807·22-s + 0.283·23-s − 1.68·24-s − 0.892·25-s − 0.179·26-s − 1.17·27-s − 1.00·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(403\)    =    \(13 \cdot 31\)
Sign: $-1$
Analytic conductor: \(3.21797\)
Root analytic conductor: \(1.79387\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 403,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 - T \)
31 \( 1 - T \)
good2 \( 1 + 0.917T + 2T^{2} \)
3 \( 1 + 2.85T + 3T^{2} \)
5 \( 1 + 0.732T + 5T^{2} \)
7 \( 1 - 4.57T + 7T^{2} \)
11 \( 1 + 4.12T + 11T^{2} \)
17 \( 1 + 3.43T + 17T^{2} \)
19 \( 1 - 0.712T + 19T^{2} \)
23 \( 1 - 1.36T + 23T^{2} \)
29 \( 1 + 4.53T + 29T^{2} \)
37 \( 1 + 11.5T + 37T^{2} \)
41 \( 1 - 3.69T + 41T^{2} \)
43 \( 1 - 9.83T + 43T^{2} \)
47 \( 1 + 7.94T + 47T^{2} \)
53 \( 1 + 2.99T + 53T^{2} \)
59 \( 1 + 7.11T + 59T^{2} \)
61 \( 1 + 7.26T + 61T^{2} \)
67 \( 1 + 10.2T + 67T^{2} \)
71 \( 1 - 8.41T + 71T^{2} \)
73 \( 1 + 11.5T + 73T^{2} \)
79 \( 1 + 4.98T + 79T^{2} \)
83 \( 1 + 4.93T + 83T^{2} \)
89 \( 1 + 4.95T + 89T^{2} \)
97 \( 1 + 13.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92204376421184613922922616996, −10.24500694905063234267603838073, −8.925388777072507912619254780078, −7.939291090071447440032423011749, −7.31535352816942495041293869605, −5.73448395035848341504897131351, −4.98551706407973014355281618771, −4.32670204224815510482353871834, −1.59069704475622030915272896410, 0, 1.59069704475622030915272896410, 4.32670204224815510482353871834, 4.98551706407973014355281618771, 5.73448395035848341504897131351, 7.31535352816942495041293869605, 7.939291090071447440032423011749, 8.925388777072507912619254780078, 10.24500694905063234267603838073, 10.92204376421184613922922616996

Graph of the $Z$-function along the critical line