Properties

Label 2-4002-1.1-c1-0-68
Degree $2$
Conductor $4002$
Sign $-1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 1.27·5-s − 6-s − 5.23·7-s − 8-s + 9-s − 1.27·10-s − 0.0462·11-s + 12-s − 5.72·13-s + 5.23·14-s + 1.27·15-s + 16-s + 5.23·17-s − 18-s + 8.21·19-s + 1.27·20-s − 5.23·21-s + 0.0462·22-s + 23-s − 24-s − 3.37·25-s + 5.72·26-s + 27-s − 5.23·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.570·5-s − 0.408·6-s − 1.97·7-s − 0.353·8-s + 0.333·9-s − 0.403·10-s − 0.0139·11-s + 0.288·12-s − 1.58·13-s + 1.39·14-s + 0.329·15-s + 0.250·16-s + 1.26·17-s − 0.235·18-s + 1.88·19-s + 0.285·20-s − 1.14·21-s + 0.00986·22-s + 0.208·23-s − 0.204·24-s − 0.674·25-s + 1.12·26-s + 0.192·27-s − 0.988·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
23 \( 1 - T \)
29 \( 1 + T \)
good5 \( 1 - 1.27T + 5T^{2} \)
7 \( 1 + 5.23T + 7T^{2} \)
11 \( 1 + 0.0462T + 11T^{2} \)
13 \( 1 + 5.72T + 13T^{2} \)
17 \( 1 - 5.23T + 17T^{2} \)
19 \( 1 - 8.21T + 19T^{2} \)
31 \( 1 + 4.18T + 31T^{2} \)
37 \( 1 - 6.31T + 37T^{2} \)
41 \( 1 - 7.07T + 41T^{2} \)
43 \( 1 + 11.1T + 43T^{2} \)
47 \( 1 - 2.31T + 47T^{2} \)
53 \( 1 - 1.04T + 53T^{2} \)
59 \( 1 - 7.63T + 59T^{2} \)
61 \( 1 + 5.95T + 61T^{2} \)
67 \( 1 + 9.46T + 67T^{2} \)
71 \( 1 + 6.52T + 71T^{2} \)
73 \( 1 + 2.12T + 73T^{2} \)
79 \( 1 + 12.5T + 79T^{2} \)
83 \( 1 + 14.8T + 83T^{2} \)
89 \( 1 + 16.4T + 89T^{2} \)
97 \( 1 + 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.006201697023749982699187873296, −7.28854899532526035128345655810, −6.97451200415505683819742099395, −5.84205840310264702611432757761, −5.43840978305669829066686370821, −3.98097171814116112165501918503, −2.94163769218434270845997362482, −2.77138212184333404659683100256, −1.35396016070446343617098042527, 0, 1.35396016070446343617098042527, 2.77138212184333404659683100256, 2.94163769218434270845997362482, 3.98097171814116112165501918503, 5.43840978305669829066686370821, 5.84205840310264702611432757761, 6.97451200415505683819742099395, 7.28854899532526035128345655810, 8.006201697023749982699187873296

Graph of the $Z$-function along the critical line